| 1 | initial version |
You can get easily the 1-forms $dx$, $dy$ and $dz$ from X.coframe(), so to initialize the 2-form $a = dx\wedge(z^2 dy)$, the simplest is to do
sage: M = Manifold(3, 'M', start_index=1)
sage: X.<x,y,z> = M.chart()
sage: dx, dy, dz = X.coframe()[:]
sage: a = dx.wedge(z^2*dy)
sage: a.set_name('a')
sage: a.display()
a = z^2 dx∧dy
| 2 | No.2 Revision |
You can get easily the 1-forms $dx$, $dy$ and $dz$ from X.coframe(), so to initialize the 2-form $a = dx\wedge(z^2 dy)$, the simplest is to do
sage: M = Manifold(3, 'M', start_index=1)
sage: X.<x,y,z> = M.chart()
sage: dx, dy, dz = X.coframe()[:]
sage: a = dx.wedge(z^2*dy)
sage: a.set_name('a')
sage: a.display()
a = z^2 dx∧dy
Then, for instance:
sage: da = diff(a)
sage: da.display()
da = 2*z dx∧dy∧dz
| 3 | No.3 Revision |
You can get easily the 1-forms $dx$, $dy$ and $dz$ from X.coframe(), so to initialize the 2-form $a = dx\wedge(z^2 dy)$, the simplest is to do
sage: M = Manifold(3, 'M', start_index=1)
sage: X.<x,y,z> = M.chart()
sage: dx, dy, dz = X.coframe()[:]
sage: a = dx.wedge(z^2*dy)
sage: a.set_name('a')
sage: a.display()
a = z^2 dx∧dy
Then, for instance:
sage: da = diff(a)
sage: da.display()
da = 2*z dx∧dy∧dz
You may find more examples in the sections "1-forms" and "Differential forms and exterior calculus" of the Manifold Tutorial
| 4 | No.4 Revision |
You can get easily the 1-forms $dx$, $dy$ $\mathrm{d}x$, $\mathrm{d}y$ and $dz$ $\mathrm{d}z$ from X.coframe(), so to initialize the 2-form $a = dx\wedge(z^2 \mathrm{d}x\wedge(z^2 dy)$, \mathrm{d}y)$, the simplest is to do
sage: M = Manifold(3, 'M', start_index=1)
sage: X.<x,y,z> = M.chart()
sage: dx, dy, dz = X.coframe()[:]
sage: a = dx.wedge(z^2*dy)
sage: a.set_name('a')
sage: a.display()
a = z^2 dx∧dy
Then, for instance:
sage: da = diff(a)
sage: da.display()
da = 2*z dx∧dy∧dz
You may find more examples in the sections "1-forms" and "Differential forms and exterior calculus" of the Manifold Tutorial
| 5 | No.5 Revision |
You can get easily the 1-forms $\mathrm{d}x$, $\mathrm{d}y$ and $\mathrm{d}z$ from X.coframe(), so to initialize the 2-form $a = \mathrm{d}x\wedge(z^2 \mathrm{d}y)$, the simplest is to do
sage: M = Manifold(3, 'M', start_index=1)
sage: X.<x,y,z> = M.chart()
sage: dx, dy, dz = X.coframe()[:]
sage: a = dx.wedge(z^2*dy)
sage: a.set_name('a')
sage: a.display()
a = z^2 dx∧dy
Then, for instance:
sage: da = diff(a)
sage: da.display()
da = 2*z dx∧dy∧dz
You may find more examples in the sections "1-forms" and "Differential forms and exterior calculus" of the Manifold Tutorial.
| 6 | No.6 Revision |
You can get easily the 1-forms $\mathrm{d}x$, $\mathrm{d}y$ and $\mathrm{d}z$ from X.coframe(), so to initialize the 2-form $a = \mathrm{d}x\wedge(z^2 \mathrm{d}y)$, the simplest is to do
sage: M = Manifold(3, 'M', start_index=1)
sage: X.<x,y,z> = M.chart()
sage: dx, dy, dz = X.coframe()[:]
sage: a = dx.wedge(z^2*dy)
sage: a.set_name('a')
sage: a.display()
a = z^2 dx∧dy
Then, for instance:
sage: da = diff(a)
sage: da.display()
da = 2*z dx∧dy∧dz
You may find more examples in the sections "1-forms" 1-forms and "Differential forms and exterior calculus" of the Manifold Tutorial.
| 7 | No.7 Revision |
You can get easily the 1-forms $\mathrm{d}x$, $\mathrm{d}y$ and $\mathrm{d}z$ from X.coframe(), so to initialize the 2-form $a = \mathrm{d}x\wedge(z^2 \mathrm{d}y)$, the simplest is to do
sage: M = Manifold(3, 'M', start_index=1)
sage: X.<x,y,z> = M.chart()
sage: dx, dy, dz = X.coframe()[:]
sage: a = dx.wedge(z^2*dy)
sage: a.set_name('a')
sage: a.display()
a = z^2 dx∧dy
Then, for instance:
sage: da = diff(a)
sage: da.display()
da = 2*z dx∧dy∧dz
You may find more examples in the sections 1-forms and "Differential Differential forms and exterior calculus" calculus of the Manifold Tutorial.
| 8 | No.8 Revision |
You can easily get easily the 1-forms $\mathrm{d}x$, $\mathrm{d}y$ and $\mathrm{d}z$ from X.coframe(), so to initialize the 2-form $a = \mathrm{d}x\wedge(z^2 \mathrm{d}y)$, the simplest is to do
sage: M = Manifold(3, 'M', start_index=1)
sage: X.<x,y,z> = M.chart()
sage: dx, dy, dz = X.coframe()[:]
sage: a = dx.wedge(z^2*dy)
sage: a.set_name('a')
sage: a.display()
a = z^2 dx∧dy
Then, for instance:
sage: da = diff(a)
sage: da.display()
da = 2*z dx∧dy∧dz
You may find more examples in the sections 1-forms and Differential forms and exterior calculus of the Manifold Tutorial.
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.