Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

I'm not sure if it is possible to get all solutions, but I can show below how to get at least some of them.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication, and first selecting the basis matrices to fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early if the span dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, start_index=0):
    '''
    Generator for lists of matrices.
    Input:
    * `M`        - matrix to decompose
    * `universe` - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint` - should nonzero elements of As form a disjoint partition of nonzero elements of M
    * technical arguments:
        * `A_span`   - initial span to cover
        * `start_index` - starting index in the universe
    '''

    if M.is_zero():
        yield []
        if disjoint:
            return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
    else:
        myU = universe

    if A_span is None:
        A_span = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    assert A_span.dimension() <= target_dim

    if A_span.dimension() == target_dim:
        CAND = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) in A_span ]
        # print('|CAND|:',len(CAND))
        for C in Subsets(CAND):         # TODO: use Normaliz
            if sum(C) == M:
                T = A_span
                for c in C:
                    T = extend_span(T,c)
                    if T.dimension() > target_dim:
                        break
                else:
                    yield list(C)
        return

    for i in range(start_index,len(myU)):
        T = extend_span(A_span,myU[i],target_dim)
        if T.dimension() > target_dim:
            continue
        elif T.dimension() <= target_dim:           # there is still room for growing dimension
            for L in gen_As(M-myU[i], myU, target_dim, disjoint, T, i+1):
                yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 5. However, for target_dim = 5, we do get solutions:

sage: list( gen_As(M, U, 5, disjoint=True) )
[[
[1 0 0 0]  [ 0  0  0  0]  [0 1 1 1]
[0 0 0 0]  [ 0  0 -1 -1]  [1 1 0 0]
[0 0 0 0]  [ 0 -1  0 -1]  [1 0 1 0]
[0 0 0 0], [ 0 -1 -1  0], [1 0 0 1]
],
 [
[1 0 0 0]  [ 0  0  0  0]  [0 0 0 0]  [0 1 1 1]
[0 0 0 0]  [ 0  0 -1 -1]  [1 1 0 0]  [0 0 0 0]
[0 0 0 0]  [ 0 -1  0 -1]  [1 0 1 0]  [0 0 0 0]
[0 0 0 0], [ 0 -1 -1  0], [1 0 0 1], [0 0 0 0]
],
 [
[1 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [0 1 1 1]
[0 0 0 0]  [1 0 0 0]  [ 0  0 -1 -1]  [0 1 0 0]
[0 0 0 0]  [1 0 0 0]  [ 0 -1  0 -1]  [0 0 1 0]
[0 0 0 0], [1 0 0 0], [ 0 -1 -1  0], [0 0 0 1]
],
 [
[1 0 0 0]  [ 0  0  0  0]  [0 0 0 0]  [0 1 1 1]
[0 0 0 0]  [ 0  0 -1 -1]  [0 1 0 0]  [1 0 0 0]
[0 0 0 0]  [ 0 -1  0 -1]  [0 0 1 0]  [1 0 0 0]
[0 0 0 0], [ 0 -1 -1  0], [0 0 0 1], [1 0 0 0]
],
 [
[1 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [0 0 0 0]  [0 1 1 1]
[0 0 0 0]  [1 0 0 0]  [ 0  0 -1 -1]  [0 1 0 0]  [0 0 0 0]
[0 0 0 0]  [1 0 0 0]  [ 0 -1  0 -1]  [0 0 1 0]  [0 0 0 0]
[0 0 0 0], [1 0 0 0], [ 0 -1 -1  0], [0 0 0 1], [0 0 0 0]
],
 [
[0 0 0 0]  [ 0  0  0  0]  [1 1 1 1]
[0 1 0 0]  [ 0  0 -1 -1]  [1 0 0 0]
[0 0 1 0]  [ 0 -1  0 -1]  [1 0 0 0]
[0 0 0 1], [ 0 -1 -1  0], [1 0 0 0]
],
 [
[1 0 0 0]  [0 1 1 1]  [ 0  0  0  0]
[0 1 0 0]  [1 0 0 0]  [ 0  0 -1 -1]
[0 0 1 0]  [1 0 0 0]  [ 0 -1  0 -1]
[0 0 0 1], [1 0 0 0], [ 0 -1 -1  0]
],
 [
[1 1 1 1]  [ 0  0  0  0]
[1 1 0 0]  [ 0  0 -1 -1]
[1 0 1 0]  [ 0 -1  0 -1]
[1 0 0 1], [ 0 -1 -1  0]
]]

I'm not sure if it is possible to get all solutions, but I can show below how to get at least some of them.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication, and first selecting the basis matrices to fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early if the span dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, start_index=0):
    '''
    Generator for lists of matrices.
    Input:
    * `M`        - matrix to decompose
    * `universe` - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint` - should nonzero elements of As form a disjoint partition of nonzero elements of M
    * technical arguments:
        * `A_span`   - initial span to cover
        * `start_index` - starting index in the universe
    '''

    if M.is_zero():
        yield []
        if disjoint:
            return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
    else:
        myU = universe

    if A_span is None:
        A_span = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    assert A_span.dimension() <= target_dim

    if A_span.dimension() == target_dim:
        CAND = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) in A_span ]
        # print('|CAND|:',len(CAND))
        for C in Subsets(CAND):         # TODO: use Normaliz
            if sum(C) == M:
                T = A_span
                for c in C:
                    T = extend_span(T,c)
                    if T.dimension() > target_dim:
                        break
                else:
                    yield list(C)
        return

    for i in range(start_index,len(myU)):
        T = extend_span(A_span,myU[i],target_dim)
        if T.dimension() > target_dim:
            continue
        elif T.dimension() <= target_dim:           # there is still room for growing dimension
             for L in gen_As(M-myU[i], myU, target_dim, disjoint, T, i+1):
                yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 5. However, for target_dim = 5, we do get solutions:

sage: list( gen_As(M, U, 5, disjoint=True) )
[[
[1 0 0 0]  [ 0  0  0  0]  [0 1 1 1]
[0 0 0 0]  [ 0  0 -1 -1]  [1 1 0 0]
[0 0 0 0]  [ 0 -1  0 -1]  [1 0 1 0]
[0 0 0 0], [ 0 -1 -1  0], [1 0 0 1]
],
 [
[1 0 0 0]  [ 0  0  0  0]  [0 0 0 0]  [0 1 1 1]
[0 0 0 0]  [ 0  0 -1 -1]  [1 1 0 0]  [0 0 0 0]
[0 0 0 0]  [ 0 -1  0 -1]  [1 0 1 0]  [0 0 0 0]
[0 0 0 0], [ 0 -1 -1  0], [1 0 0 1], [0 0 0 0]
],
 [
[1 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [0 1 1 1]
[0 0 0 0]  [1 0 0 0]  [ 0  0 -1 -1]  [0 1 0 0]
[0 0 0 0]  [1 0 0 0]  [ 0 -1  0 -1]  [0 0 1 0]
[0 0 0 0], [1 0 0 0], [ 0 -1 -1  0], [0 0 0 1]
],
 [
[1 0 0 0]  [ 0  0  0  0]  [0 0 0 0]  [0 1 1 1]
[0 0 0 0]  [ 0  0 -1 -1]  [0 1 0 0]  [1 0 0 0]
[0 0 0 0]  [ 0 -1  0 -1]  [0 0 1 0]  [1 0 0 0]
[0 0 0 0], [ 0 -1 -1  0], [0 0 0 1], [1 0 0 0]
],
 [
[1 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [0 0 0 0]  [0 1 1 1]
[0 0 0 0]  [1 0 0 0]  [ 0  0 -1 -1]  [0 1 0 0]  [0 0 0 0]
[0 0 0 0]  [1 0 0 0]  [ 0 -1  0 -1]  [0 0 1 0]  [0 0 0 0]
[0 0 0 0], [1 0 0 0], [ 0 -1 -1  0], [0 0 0 1], [0 0 0 0]
],
 [
[0 0 0 0]  [ 0  0  0  0]  [1 1 1 1]
[0 1 0 0]  [ 0  0 -1 -1]  [1 0 0 0]
[0 0 1 0]  [ 0 -1  0 -1]  [1 0 0 0]
[0 0 0 1], [ 0 -1 -1  0], [1 0 0 0]
],
 [
[1 0 0 0]  [0 1 1 1]  [ 0  0  0  0]
[0 1 0 0]  [1 0 0 0]  [ 0  0 -1 -1]
[0 0 1 0]  [1 0 0 0]  [ 0 -1  0 -1]
[0 0 0 1], [1 0 0 0], [ 0 -1 -1  0]
],
 [
[1 1 1 1]  [ 0  0  0  0]
[1 1 0 0]  [ 0  0 -1 -1]
[1 0 1 0]  [ 0 -1  0 -1]
[1 0 0 1], [ 0 -1 -1  0]
]]

Below I show a somewhat promising approach to this problem, although I'm still not sure if it is it's possible to get all solutions, but I can show below how to get at least some of them.solve it in reasonable time.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication, and first selecting multiplication. First we select the basis matrices to and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early if the span when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices.
matrices summing to `M`.
    Input:
    * `M`         - matrix to decompose
    * `universe`  - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`  - should nonzero elements of As form a disjoint partition of nonzero elements of M
    *  technical arguments:
        * `A_span`    - initial span to cover
of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [M.parent().zero()] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension():
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_span is None:
        A_span = span( mat_to_vector(M^i) A_subring.dimension() == target_dim:
        myU = [ w for i in range(M.minpoly().degree()) )

    assert A_span.dimension() <= target_dim

range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:
        CAND = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) in A_span ]
target_dim:                   # print('|CAND|:',len(CAND))
that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(CAND): Subsets(myU):         # TODO: use Normaliz
             if sum(C) == M:
                 T = A_span
A_subring
                    for c in C:
                     T = extend_span(T,c)
extend_subring(T,c,target_dim)
                        if T.dimension() > target_dim:
                         break
                 else:
                     yield list(C)
         return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)):
range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_span(A_span,myU[i],target_dim)
extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim:
target_dim: 
            continue
        elif T.dimension() <= target_dim: 
            for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span(myU[i]), T, i+1):
             yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim target_dim is less than 5. However, for target_dim = 5, we do get solutions:10.

sage: list( gen_As(M, U, 5, disjoint=True) )
[[
[1 0 0 0]  [ 0  0  0  0]  [0 1 1 1]
[0 0 0 0]  [ 0  0 -1 -1]  [1 1 0 0]
[0 0 0 0]  [ 0 -1  0 -1]  [1 0 1 0]
[0 0 0 0], [ 0 -1 -1  0], [1 0 0 1]
],
 [
[1 0 0 0]  [ 0  0  0  0]  [0 0 0 0]  [0 1 1 1]
[0 0 0 0]  [ 0  0 -1 -1]  [1 1 0 0]  [0 0 0 0]
[0 0 0 0]  [ 0 -1  0 -1]  [1 0 1 0]  [0 0 0 0]
[0 0 0 0], [ 0 -1 -1  0], [1 0 0 1], [0 0 0 0]
],
 [
[1 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [0 1 1 1]
[0 0 0 0]  [1 0 0 0]  [ 0  0 -1 -1]  [0 1 0 0]
[0 0 0 0]  [1 0 0 0]  [ 0 -1  0 -1]  [0 0 1 0]
[0 0 0 0], [1 0 0 0], [ 0 -1 -1  0], [0 0 0 1]
],
 [
[1 0 0 0]  [ 0  0  0  0]  [0 0 0 0]  [0 1 1 1]
[0 0 0 0]  [ 0  0 -1 -1]  [0 1 0 0]  [1 0 0 0]
[0 0 0 0]  [ 0 -1  0 -1]  [0 0 1 0]  [1 0 0 0]
[0 0 0 0], [ 0 -1 -1  0], [0 0 0 1], [1 0 0 0]
],
 [
[1 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [0 0 0 0]  [0 1 1 1]
[0 0 0 0]  [1 0 0 0]  [ 0  0 -1 -1]  [0 1 0 0]  [0 0 0 0]
[0 0 0 0]  [1 0 0 0]  [ 0 -1  0 -1]  [0 0 1 0]  [0 0 0 0]
[0 0 0 0], [1 0 0 0], [ 0 -1 -1  0], [0 0 0 1], [0 0 0 0]
],
 [
[0 0 0 0]  [ 0  0  0  0]  [1 1 1 1]
[0 1 0 0]  [ 0  0 -1 -1]  [1 0 0 0]
[0 0 1 0]  [ 0 -1  0 -1]  [1 0 0 0]
[0 0 0 1], [ 0 -1 -1  0], [1 0 0 0]
],
 [
[1 0 0 0]  [0 1 1 1]  [ 0  0  0  0]
[0 1 0 0]  [1 0 0 0]  [ 0  0 -1 -1]
[0 0 1 0]  [1 0 0 0]  [ 0 -1  0 -1]
[0 0 0 1], [1 0 0 0], [ 0 -1 -1  0]
],
 [
[1 1 1 1]  [ 0  0  0  0]
[1 1 0 0]  [ 0  0 -1 -1]
[1 0 1 0]  [ 0 -1  0 -1]
[1 0 0 1], [ 0 -1 -1  0]
]]

Below I show a somewhat promising approach to this problem, although I'm still not sure if it's possible to solve it in reasonable time.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication. First we select the basis matrices and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices summing to `M`.
    Input:
    * `M`          - matrix to decompose
    * `universe`   - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`   - should nonzero elements of As form a disjoint partition of nonzero elements of M
      technical arguments:
        * `A_span`      - span of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [M.parent().zero()] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension():
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_subring.dimension() == target_dim:
        myU = [ w for i in range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:                   # that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(myU):         # TODO: use Normaliz
                if sum(C) == M:
                    T = A_subring
                    for c in C:
                        T = extend_subring(T,c,target_dim)
                        if T.dimension() > target_dim:
                            break
                    else:
                        yield list(C)
            return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim: 
            continue
        for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span(myU[i]), T, i+1):
            yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 10.11, which indicates that in any solution there should be at least 11 summands.

Below I show a somewhat promising approach to this problem, although I'm still not sure if it's possible to solve it in reasonable time.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication. First we select the basis matrices and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices summing to `M`.
    Input:
    * `M`          - matrix to decompose
    * `universe`   - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`   - should nonzero elements of As form a disjoint partition of nonzero elements of M
      technical arguments:
        * `A_span`      - span of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [M.parent().zero()] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension():
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_subring.dimension() == target_dim:
        myU = [ w for i in range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:                   # that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(myU):         # TODO: use Normaliz
                if sum(C) == M:
                    T = A_subring
                    for c in C:
                        T = extend_subring(T,c,target_dim)
                        if T.dimension() > target_dim:
                            break
                    else:
                        yield list(C)
            return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim: 
            continue
        for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span(myU[i]), T, i+1):
            yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 11, which indicates that in any solution there should be at least 11 linearly-independent summands.

Below I show a somewhat promising approach to this problem, although I'm still not sure if it's possible to solve it in reasonable time.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication. First we select the basis matrices and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices summing to `M`.
    Input:
    * `M`          - matrix to decompose
    * `universe`   - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`   - should nonzero elements of As form a disjoint partition of nonzero elements of M
      technical arguments:
        * `A_span`      - span of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [M.parent().zero()] [mat_to_vector(M.parent().zero())] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension():
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_subring.dimension() == target_dim:
        myU = [ w for i in range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:                   # that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(myU):         # TODO: use Normaliz
                if sum(C) == M:
                    T = A_subring
                    for c in C:
                        T = extend_subring(T,c,target_dim)
                        if T.dimension() > target_dim:
                            break
                    else:
                        yield list(C)
            return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim: 
            continue
        for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span(myU[i]), span([mat_to_vector(myU[i])]), T, i+1):
            yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 11, which indicates that in any solution there should be at least 11 linearly-independent summands.5. However, with target_dim = 5 we get a unique solution:

sage: list( gen_As(M,U,5) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0 -1  0 -1]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1 -1  0]
]]

Below I show a somewhat promising approach to this problem, although I'm still not sure if it's possible to solve it in reasonable time.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication. First we select the basis matrices and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices summing to `M`.
    Input:
    * `M`          - matrix to decompose
    * `universe`   - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`   - should nonzero elements of As form a disjoint partition of nonzero elements of M
      technical arguments:
        * `A_span`      - span of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [mat_to_vector(M.parent().zero())] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension():
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_subring.dimension() == target_dim:
        myU = [ w for i in range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:                   # that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(myU):         # TODO: use Normaliz
                if sum(C) == M:
                    T = A_subring
                    for c in C:
                        T = extend_subring(T,c,target_dim)
                        if T.dimension() > target_dim:
                            break
                    else:
                        yield list(C)
            return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim: 
            continue
        for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span([mat_to_vector(myU[i])]), T, i+1):
            yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 5. However, with target_dim = 5 we get a unique solution:

sage: list( gen_As(M,U,5) gen_As(M,U,5,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0 -1  0 -1]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1 -1  0]
]]

Below I show a somewhat promising approach to this problem, although I'm still not sure if it's possible to solve it in reasonable time.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication. First we select the basis matrices and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices summing to `M`.
    Input:
    * `M`          - matrix to decompose
    * `universe`   - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`   - should nonzero elements of As form a disjoint partition of nonzero elements of M
      technical arguments:
        * `A_span`      - span of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [mat_to_vector(M.parent().zero())] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension():
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_subring.dimension() == target_dim:
        myU = [ w for i in range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:                   # that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(myU):         # TODO: use Normaliz
                if sum(C) == M:
                    T = A_subring
                    for c in C:
                        T = extend_subring(T,c,target_dim)
                        if T.dimension() > target_dim:
                            break
                    else:
                        yield list(C)
            return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim: 
            continue
        for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span([mat_to_vector(myU[i])]), T, i+1):
            yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 5. However, with target_dim = 5 we get a unique solution:

sage: list( gen_As(M,U,5,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0 -1  0 -1]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1 -1  0]
]]

For targer_dim = 6, we get two solutions:

sage: list( gen_As(M,U,6,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1  0]  [ 0  0  0 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0  0  0 -1]  [ 0 -1  0  0]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1  0  0], [ 0  0 -1  0]
],
[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0 -1  0 -1]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1 -1  0]
]]

Below I show a somewhat promising approach to this problem, although I'm still not sure if it's possible to solve it in reasonable time.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication. First we select the basis matrices and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices summing to `M`.
    Input:
    * `M`          - matrix to decompose
    * `universe`   - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`   - should nonzero elements of As form a disjoint partition of nonzero elements of M
      technical arguments:
        * `A_span`      - span of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [mat_to_vector(M.parent().zero())] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension():
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_subring.dimension() == target_dim:
        myU = [ w for i in range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:                   # that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(myU):         # TODO: use Normaliz
                if sum(C) == M:
                    T = A_subring
                    for c in C:
                        T = extend_subring(T,c,target_dim)
                        if T.dimension() > target_dim:
                            break
                    else:
                        yield list(C)
            return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim: 
            continue
        for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span([mat_to_vector(myU[i])]), T, i+1):
            yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 5. However, with target_dim = 5 we get a unique solution:

sage: list( gen_As(M,U,5,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0 -1  0 -1]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1 -1  0]
]]

For targer_dim = 6, we get two solutions:

sage: list( gen_As(M,U,6,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1  0]  [ 0  0  0 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0  0  0 -1]  [ 0 -1  0  0]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1  0  0], [ 0  0 -1  0]
],
[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0 -1  0 -1]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1 -1  0]
]]

Below I show a somewhat promising approach to this problem, although I'm still not sure if it's possible to solve it in reasonable time.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication. First we select the basis matrices and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices summing to `M`.
    Input:
    * `M`          - matrix to decompose
    * `universe`   - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`   - should nonzero elements of As form a disjoint partition of nonzero elements of M
      technical arguments:
        * `A_span`      - span of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [mat_to_vector(M.parent().zero())] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension():
A_subring.dimension() == target_dim:
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_subring.dimension() == target_dim:
        myU = [ w for i in range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:                   # that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(myU):         # TODO: use Normaliz
                if sum(C) == M:
                    T = A_subring
                    for c in C:
                        T = extend_subring(T,c,target_dim)
                        if T.dimension() > target_dim:
                            break
                    else:
                        yield list(C)
            return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim: 
            continue
        for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span([mat_to_vector(myU[i])]), T, i+1):
            yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 5. However, with target_dim = 5 we get a unique solution:

sage: list( gen_As(M,U,5,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0 -1  0 -1]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1 -1  0]
]]

For target_dim = 6, there is also a unique solution:

sage: list( gen_As(M,U,5,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1  0]  [ 0  0  0 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0  0  0 -1]  [ 0 -1  0  0]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1  0  0], [ 0  0 -1  0]
]]

Below I show a somewhat promising approach to this problem, although I'm still not sure if it's possible to solve it in reasonable time.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication. First we select the basis matrices and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices summing to `M`.
    Input:
    * `M`          - matrix to decompose
    * `universe`   - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`   - should nonzero elements of As form a disjoint partition of nonzero elements of M
      technical arguments:
        * `A_span`      - span of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [mat_to_vector(M.parent().zero())] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension() == target_dim:
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_subring.dimension() == target_dim:
        myU = [ w for i in range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:                   # that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(myU):         # TODO: use Normaliz
                if sum(C) == M:
                    T = A_subring
                    for c in C:
                        T = extend_subring(T,c,target_dim)
                        if T.dimension() > target_dim:
                            break
                    else:
                        yield list(C)
            return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim: 
            continue
        for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span([mat_to_vector(myU[i])]), T, i+1):
            yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 5. However, with target_dim = 5 we get a unique solution:

sage: list( gen_As(M,U,5,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0 -1  0 -1]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1 -1  0]
]]

For target_dim = 6, there is also a unique solution:

sage: list( gen_As(M,U,5,disjoint=True) gen_As(M,U,6,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1  0]  [ 0  0  0 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0  0  0 -1]  [ 0 -1  0  0]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1  0  0], [ 0  0 -1  0]
]]

Below I show a somewhat promising approach to this problem, although I'm still not sure if it's it is possible to solve it in reasonable time.get all solutions, but I can show below how to get at least some of them.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication. First we select the basis matrices and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices summing to `M`.
    Input:
    * `M`          - matrix to decompose
    * `universe`   - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`   - should nonzero elements of As form a disjoint partition of nonzero elements of M
      technical arguments:
        * `A_span`      - span of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [mat_to_vector(M.parent().zero())] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension() == target_dim:
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_subring.dimension() == target_dim:
        myU = [ w for i in range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:                   # that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(myU):         # TODO: use Normaliz
                if sum(C) == M:
                    T = A_subring
                    for c in C:
                        T = extend_subring(T,c,target_dim)
                        if T.dimension() > target_dim:
                            break
                    else:
                        yield list(C)
            return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim: 
            continue
        for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span([mat_to_vector(myU[i])]), T, i+1):
            yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 5. However, with target_dim = 5 we get a unique solution:

sage: list( gen_As(M,U,5,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0 -1  0 -1]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1 -1  0]
]]

For target_dim = 6, there is also a unique solution:

sage: list( gen_As(M,U,6,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1  0]  [ 0  0  0 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0  0  0 -1]  [ 0 -1  0  0]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1  0  0], [ 0  0 -1  0]
]]

For target_dim = 7, there are no solutions.

I'm not sure if it is possible to get all solutions, but I can show below how to get at least some of them.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication. First we select the basis matrices and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices summing to `M`.
    Input:
    * `M`          - matrix to decompose
    * `universe`   - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`   - should nonzero elements of As form a disjoint partition of nonzero elements of M
      technical arguments:
        * `A_span`      - span of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [mat_to_vector(M.parent().zero())] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension() == target_dim:
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_subring.dimension() == target_dim:
        myU = [ w for i in range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:                   # that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(myU):         # TODO: use Normaliz
                if sum(C) == M:
                    T = A_subring
                    for c in C:
                        T = extend_subring(T,c,target_dim)
                        if T.dimension() > target_dim:
                            break
                    else:
                        yield list(C)
            return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim: 
            continue
        for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span([mat_to_vector(myU[i])]), T, i+1):
            yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 5. However, with target_dim = 5 we get a unique solution:

sage: list( gen_As(M,U,5,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0 -1  0 -1]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1 -1  0]
]]

For target_dim = 6, there is also a unique solution:

sage: list( gen_As(M,U,6,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1  0]  [ 0  0  0 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0  0  0 -1]  [ 0 -1  0  0]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1  0  0], [ 0  0 -1  0]
]]

For target_dim in $\{ 7,8,9,11 \}$ there are no solutions, while for target_dim = 710, there are no solutions.3 solutions:

[[[ 0  0  0  0]
[ 0  0  0  0]
[ 0  0  0 -1]
[ 0  0 -1  0], 
[0 1 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[ 0  0  0  0]
[ 0  0 -1 -1]
[ 0  0  0  0]
[ 0  0  0  0], 
[ 0  0  0  0]
[ 0  0  0  0]
[ 0 -1  0  0]
[ 0 -1  0  0], 
[0 0 0 0]
[0 0 0 0]
[1 0 0 0]
[1 0 0 0], 
[0 0 1 1]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[1 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[0 0 0 0]
[0 0 0 0]
[0 0 1 0]
[0 0 0 1], 
[0 0 0 0]
[1 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[0 0 0 0]
[0 1 0 0]
[0 0 0 0]
[0 0 0 0]], 

[[ 0  0  0  0]
[ 0  0  0  0]
[ 0 -1  0 -1]
[ 0  0  0  0], 
[ 0  0  0  0]
[ 0  0 -1  0]
[ 0  0  0  0]
[ 0  0 -1  0], 
[0 0 0 0]
[1 0 0 0]
[0 0 0 0]
[1 0 0 0], 
[0 0 1 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[0 1 0 1]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[1 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[0 0 0 0]
[0 1 0 0]
[0 0 0 0]
[0 0 0 1], 
[ 0  0  0  0]
[ 0  0  0 -1]
[ 0  0  0  0]
[ 0 -1  0  0], 
[0 0 0 0]
[0 0 0 0]
[0 0 1 0]
[0 0 0 0], 
[0 0 0 0]
[0 0 0 0]
[1 0 0 0]
[0 0 0 0]], 

[[0 0 0 1]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[ 0  0  0  0]
[ 0  0 -1  0]
[ 0 -1  0  0]
[ 0  0  0  0], 
[ 0  0  0  0]
[ 0  0  0 -1]
[ 0  0  0 -1]
[ 0  0  0  0], 
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 1], 
[ 0  0  0  0]
[ 0  0  0  0]
[ 0  0  0  0]
[ 0 -1 -1  0], 
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[1 0 0 0], 
[0 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 0], 
[1 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[0 0 0 0]
[1 0 0 0]
[1 0 0 0]
[0 0 0 0], 
[0 1 1 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]
]

I'm not sure if it is possible to get all solutions, but I can show below how to get at least some of them.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication. First we select the basis matrices and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices summing to `M`.
    Input:
    * `M`          - matrix to decompose
    * `universe`   - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`   - should nonzero elements of As form a disjoint partition of nonzero elements of M
      technical arguments:
        * `A_span`      - span of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [mat_to_vector(M.parent().zero())] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension() == target_dim:
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_subring.dimension() == target_dim:
        myU = [ w for i in range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:                   # that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(myU):         # TODO: use Normaliz
                if sum(C) == M:
                    yield list(C)
            return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim: 
            continue
        for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span([mat_to_vector(myU[i])]), T, i+1):
            yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 5. However, with target_dim = 5 we get a unique solution:

sage: list( gen_As(M,U,5,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0 -1  0 -1]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1 -1  0]
]]

For target_dim = 6, there is also a unique solution:

sage: list( gen_As(M,U,6,disjoint=True) )
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1  0]  [ 0  0  0 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0  0  0 -1]  [ 0 -1  0  0]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1  0  0], [ 0  0 -1  0]
]]

For target_dim in $\{ 7,8,9,11 \}$ there are no solutions, while for target_dim = 10, there are 3 solutions:

[[[ 0  0  0  0]
[ 0  0  0  0]
[ 0  0  0 -1]
[[
[ 0  0  0  0]  [ 0  0  0  0]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0  0 -1  0], 
[0 -1]  [ 0  0  0  0]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0  0  0  0]  [ 0 -1  0  0]  [ 0  0  0 -1]  [0 0 1 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[ 0  0  0  0]
[ 0  0]  [1 0 0 0]
[ 0  0  0  0], [ 0 -1 -1]
[ 0  0  0  0]
[ 0  0  0  0], 
[ 0  0  0  0]
[ 0  0  0  0]
[  0  0], [ 0  0 -1  0  0]
[ 0], [0 0 0 1], [1 0 0 0],

[0 0 0 0]  [0 0 0 0]  [0 0 1 1]  [0 1 0 0]  [1 0 0 0]
[0 1 0 0]  [1 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]
[0 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]
[0 0 0 0], [0 0 0 0], [0 0 0 0], [0 0 0 0], [0 0 0 0]
],
 [
[ 0  0  0  0]  [ 0  0  0  0]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0  0 -1  0  0], 
[0 0 0 0]
[0 0 0 0]
0]  [ 0  0  0 -1]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0  0  0  0]  [ 0  0  0  0]  [ 0 -1  0 -1]  [0 0 1 0]  [1 0 0 0]
[ 0  0 -1  0], [ 0 -1  0  0], [ 0  0  0  0], [0 0 0 0], [0 0 0 0],

[0 0 0 0]  [0 0 0 0]  [0 0 1 0]  [0 1 0 1]  [1 0 0 0], 
[0 0 0]
[0 1 1]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
0 0]  [1 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[0 0 0 0]
[0 0 0 0]
[0 0 1 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]
[0 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]
[0 0 0 1], 
[0 0 0 0]
[1 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[0 0 0 0]
[0 1 0 0]
[0 0 0 0]
[0 0 0 0]], 

[[ 0  0  0  0]
[ 0  0  0  0]
[ 0], [0 0 0 0], [0 0 0 0], [0 0 0 0]
],
 [
[ 0  0  0  0]  [ 0  0  0  0]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0  0 -1  0 -1]
[ 0  0  0  0], 
[ 0  0  0  0]
[ 0  0]  [ 0  0  0 -1]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0 -1  0]
[ 0  0  0  0]
[ 0  0 -1  0], 
[0 0 0 0]
[1 0 0 0]
[0 0 0 0]
[1 0 0 0], 
[0 0 1 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[0 1 0 1]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[1 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[0 0 0 0]
[0 1 0 0]
[0 0 0 0]
[0 0 0 1], 
[ 0  0  0  0]
[ 0  0  0 -1]
[ 0  0  0  0]
[ 0 -1  0  0], 
[0 0 0 0]
[0 0 0 0]
[0 0 1 0]
[0 0 0 0], 
[0 0 0 0]
[0 0 0 0]
[1 0 0 0]
[0 0 0 0]], 

[[0 0 0 1]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[ 0  0  0  0]
[ 0  0 -1  0]
[ 0 -1  0  0]
[ 0  0  0  0], 
[ 0  0  0  0]
[ 0  0  0 -1]
[ 0  0  0 -1]
[ 0  0  0  0], 
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 1], 
[ 0  0  0  0]
[ 0  0  0  0]
[ 0  0  0  0]
0  0]  [ 0  0  0 -1]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0  0  0  0], [ 0  0  0  0], [ 0 -1 -1  0], 
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 1], [1 0 0 0], 
[0 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 0], 
[1 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0], 
[0 0 0 0]
[1 0 0 0]
[1 0 0 0]
[0 0 0 0], 
0],

[0 0 0 0]  [0 0 0 0]  [0 0 0 1]  [0 1 1 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]
]
0]  [1 0 0 0]
[0 1 0 0]  [1 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]
[0 0 1 0]  [1 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]
[0 0 0 0], [0 0 0 0], [0 0 0 0], [0 0 0 0], [0 0 0 0]
]]

I'm not sure if it is possible to get all solutions, but I can show below how to get at least some of them.

Let us start with set up, where we create a list of candidate $(0,+1)$ or $(0,-1)$ matrices $A$:

# given matrix
M = matrix(ZZ, [[1, 1, 1, 1], [1, 1, -1, -1], [1, -1, 1, -1], [1, -1, -1, 1]])

def mat_to_vector(m):
    return vector( m.list(), immutable=True )

pos_p = [i for i,e in enumerate(mat_to_vector(M)) if e==1]
pos_n = [i for i,e in enumerate(mat_to_vector(M)) if e==-1]

U = []
for S in Subsets(pos_p):
    if S:
        U.append( Matrix(ZZ,n,n,[int(i in S) for i in range(n^2)], immutable=True) )
for S in Subsets(pos_n):
    if S:
        U.append( Matrix(ZZ,n,n,[-int(i in S) for i in range(n^2)], immutable=True) )

Now, to reduce the search space we will follow the same idea from my previous answer of fixing the dimension of the matrix span, which, in fact, should be a matrix subring closed under multiplication. First we select the basis matrices and thus fix a subring, and then filter the rest of the matrices based on whether they belong to the subring. Here is implementation of this idea:idea: https://gist.github.com/maxale/9ebcf95a4bf3c8dff86caffbf65bac00

# extend a given span (module) with a matrix A into a subring (closed under multiplication)
# breaks early when dimension becomes > max_dim
def extend_span(S,A,max_dim=+oo):
    n = A.nrows()
    S += span( mat_to_vector(A^i) for i in range(A.minpoly().degree()) )
    while S.dimension() <= max_dim:
        T = S + span( mat_to_vector(Matrix(n,n,u)*Matrix(n,n,v)) for u,v in Tuples(S.basis(),2) )
        if T.dimension() == S.dimension():
            break
        S = T
    return S

def gen_As(M, universe, target_dim, disjoint=True, A_span=None, A_subring=None, start_index=0):
    '''
    Generator for lists of matrices summing to `M`.
    Input:
    * `M`          - matrix to decompose
    * `universe`   - universe of matrices to select As from
    * `target_dim` - target dimension of the span of As
    * `disjoint`   - should nonzero elements of As form a disjoint partition of nonzero elements of M
      technical arguments:
        * `A_span`      - span of selected As
        * `A_subring`   - span of the subring generated by selected As
        * `start_index` - starting index in the universe
    '''
    if A_span is None:
        A_span = span( [mat_to_vector(M.parent().zero())] )
        A_subring = span( mat_to_vector(M^i) for i in range(M.minpoly().degree()) )

    if M.is_zero():
        if A_span.dimension() == A_subring.dimension() == target_dim:
            yield []
        if disjoint:
            return

    if A_subring.dimension() > target_dim:
        return

    if disjoint:
        myU = [universe[i] for i in range(start_index,len(universe)) if all(a!=0 or b==0 for a,b in zip(M.list(),universe[i].list()))]
        start_index = 0
        if len(myU) < target_dim - A_span.dimension():
            return
    else:
        myU = universe

    if A_subring.dimension() == target_dim:
        myU = [ w for i in range(start_index,len(myU)) if (v:=mat_to_vector(w:=myU[i])) in A_subring ]
        start_index = 0

        if A_span.dimension() == target_dim:                   # that is, A_subring == A_span
            print('|CAND|:',len(myU))
            for C in Subsets(myU):         # TODO: use Normaliz
                if sum(C) == M:
                    yield list(C)
            return

    # here we have dim(A_span) <= dim(A_subring) < target_dim
    myU = [ w for i in range(start_index,len(myU)) if mat_to_vector(w:=myU[i]) not in A_span ]
    if len(myU) < target_dim - A_span.dimension():
        return

    for i in range(len(myU)):
        T = extend_subring(A_subring,myU[i],target_dim)
        if T.dimension() > target_dim: 
            continue
        for L in gen_As(M-myU[i], myU, target_dim, disjoint, A_span + span([mat_to_vector(myU[i])]), T, i+1):
            yield [myU[i]] + L

It turns out that for a given matrix, there are no solutions if target_dim is less than 5. However, with target_dim = 5 we get a unique solution:

sage: list( gen_As(M,U,5,disjoint=True) )
all_As_dim(M,U,5,True)
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0 -1  0 -1]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1 -1  0]
]]

For target_dim = 6, there is also a unique solution:

sage: list( gen_As(M,U,6,disjoint=True) )
all_As_dim(M,U,6,True)
[[
[1 0 0 0]  [0 1 1 1]  [0 0 0 0]  [0 0 0 0]  [ 0  0  0  0]  [ 0  0  0  0]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 1 0 0]  [ 0  0 -1  0]  [ 0  0  0 -1]
[0 0 0 0]  [0 0 0 0]  [1 0 0 0]  [0 0 1 0]  [ 0  0  0 -1]  [ 0 -1  0  0]
[0 0 0 0], [0 0 0 0], [1 0 0 0], [0 0 0 1], [ 0 -1  0  0], [ 0  0 -1  0]
]]

For target_dim in $\{ 7,8,9,11 \}$ there are no solutions, while for target_dim = 10, there are 3 solutions:

sage: all_As_dim(M,U,10,True)
[[
[ 0  0  0  0]  [ 0  0  0  0]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0  0 -1 -1]  [ 0  0  0  0]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0  0  0  0]  [ 0 -1  0  0]  [ 0  0  0 -1]  [0 0 1 0]  [1 0 0 0]
[ 0  0  0  0], [ 0 -1  0  0], [ 0  0 -1  0], [0 0 0 1], [1 0 0 0],

[0 0 0 0]  [0 0 0 0]  [0 0 1 1]  [0 1 0 0]  [1 0 0 0]
[0 1 0 0]  [1 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]
[0 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]
[0 0 0 0], [0 0 0 0], [0 0 0 0], [0 0 0 0], [0 0 0 0]
],
 [
[ 0  0  0  0]  [ 0  0  0  0]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0  0 -1  0]  [ 0  0  0 -1]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0  0  0  0]  [ 0  0  0  0]  [ 0 -1  0 -1]  [0 0 1 0]  [1 0 0 0]
[ 0  0 -1  0], [ 0 -1  0  0], [ 0  0  0  0], [0 0 0 0], [0 0 0 0],

[0 0 0 0]  [0 0 0 0]  [0 0 1 0]  [0 1 0 1]  [1 0 0 0]
[0 1 0 0]  [1 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]
[0 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]
[0 0 0 1], [1 0 0 0], [0 0 0 0], [0 0 0 0], [0 0 0 0]
],
 [
[ 0  0  0  0]  [ 0  0  0  0]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0  0 -1  0]  [ 0  0  0 -1]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0 -1  0  0]  [ 0  0  0 -1]  [ 0  0  0  0]  [0 0 0 0]  [0 0 0 0]
[ 0  0  0  0], [ 0  0  0  0], [ 0 -1 -1  0], [0 0 0 1], [1 0 0 0],

[0 0 0 0]  [0 0 0 0]  [0 0 0 1]  [0 1 1 0]  [1 0 0 0]
[0 1 0 0]  [1 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]
[0 0 1 0]  [1 0 0 0]  [0 0 0 0]  [0 0 0 0]  [0 0 0 0]
[0 0 0 0], [0 0 0 0], [0 0 0 0], [0 0 0 0], [0 0 0 0]
]]