1 | initial version |
To solve a numerical probability/statistics problem with Sage, the laziest (and usually best) solution is to use the innumerable R functions dedicated to such problems. In the present case :
sage: foo=r.runif(20)._sage_() ; foo # A random vector
[0.0390772928949445,
0.654059152351692,
0.339493476552889,
0.51896350691095,
0.556925253942609,
0.978059642249718,
0.14837371581234,
0.391689434181899,
0.229549546260387,
0.0452805508393794,
0.742159304674715,
0.836738985031843,
0.663826596457511,
0.0411422045435756,
0.649067221442237,
0.67311915429309,
0.976733086397871,
0.433464009081945,
0.182737077819183,
0.854663047939539]
sage: r.quantile(foo, 1/4)._sage_()['DATA']
0.217846429150086
HTH,
2 | No.2 Revision |
To solve a numerical probability/statistics problem with Sage, the laziest (and usually best) solution is to use the innumerable R functions dedicated to such problems. In the present case :
sage: foo=r.runif(20)._sage_() ; foo # A random vector
[0.0390772928949445,
0.654059152351692,
0.339493476552889,
0.51896350691095,
0.556925253942609,
0.978059642249718,
0.14837371581234,
0.391689434181899,
0.229549546260387,
0.0452805508393794,
0.742159304674715,
0.836738985031843,
0.663826596457511,
0.0411422045435756,
0.649067221442237,
0.67311915429309,
0.976733086397871,
0.433464009081945,
0.182737077819183,
0.854663047939539]
sage: r.quantile(foo, 1/4)._sage_()['DATA']
0.217846429150086
To get a DICTIONARY of a list of quantiles :
sage: dict(zip((Q:=r.quantile(foo, [1/4, 3/4])._sage_())['_Names'], Q['DATA']))
{'25%': 0.278735583007801, '75%': 0.775309360586107}
sage: dict(zip((Q:=[1/4, 3/4]), r.quantile(foo, Q)._sage_()['DATA']))
{1/4: 0.278735583007801, 3/4: 0.775309360586107}
To get a (numerical) function interpolating the empirical repartition :
sage: bar=spline(zip((Q:=srange(0, 1, 1/10)), r.quantile(foo, Q)._sage_()['DATA']))
sage: bar(1/4) # Not in the generating quantile list
0.3366159958860885
R also has some functions building interpolation (R) functions, but wrapping them to be usable from Sage isn't trivial...
Note : See the documentation of r.quantile
for the options available to build the quantiles (nontrivial either...).
HTH,