1 | initial version |
The internal representation is dense. You can (efficiently) get the dense list of coefficients as follows:
sage: p.coefficients(sparse=False)
[1, 0, 2]
sage: p.list()
[1, 0, 2]
Note that the implementation of the coefficients
method is the following:
def coefficients(self, sparse=True):
"""
Return the coefficients of the monomials appearing in self.
If ``sparse=True`` (the default), it returns only the non-zero coefficients.
Otherwise, it returns the same value as ``self.list()``.
(In this case, it may be slightly faster to invoke ``self.list()`` directly.)
EXAMPLES::
sage: _.<x> = PolynomialRing(ZZ)
sage: f = x^4 + 2*x^2 + 1
sage: f.coefficients()
[1, 2, 1]
sage: f.coefficients(sparse=False)
[1, 0, 2, 0, 1]
"""
zero = self._parent.base_ring().zero()
if sparse:
return [c for c in self.list() if c != zero]
else:
return self.list()
2 | No.2 Revision |
The internal representation is dense. You can (efficiently) get the dense list of coefficients as follows:
sage: p.coefficients(sparse=False)
[1, 0, 2]
sage: p.list()
[1, 0, 2]
Note that the implementation of the coefficients
method (for the polynomial ring constructed with sparse=False
) is the following:
def coefficients(self, sparse=True):
"""
Return the coefficients of the monomials appearing in self.
If ``sparse=True`` (the default), it returns only the non-zero coefficients.
Otherwise, it returns the same value as ``self.list()``.
(In this case, it may be slightly faster to invoke ``self.list()`` directly.)
EXAMPLES::
sage: _.<x> = PolynomialRing(ZZ)
sage: f = x^4 + 2*x^2 + 1
sage: f.coefficients()
[1, 2, 1]
sage: f.coefficients(sparse=False)
[1, 0, 2, 0, 1]
"""
zero = self._parent.base_ring().zero()
if sparse:
return [c for c in self.list() if c != zero]
else:
return self.list()