1 | initial version |
One can have a better control such substitutions using polynomial machinery, reducing a polynomial modulo the ideal generated by desired substitutions:
K.< E, t, c> = QQ[]
D=(1-c)*(L+3*E)
Dt=D-t*E
Dt_E=Dt*E
J = ideal([E*L-1/2, E*E+1/6, L*L+1/2, E*L*c-c*1/2])
print( Dt_E.reduce(J) )
2 | No.2 Revision |
One can have a better control such substitutions using polynomial machinery, reducing a polynomial modulo the ideal generated by desired substitutions:
K.< E, t, c> = QQ[]
D=(1-c)*(L+3*E)
Dt=D-t*E
Dt_E=Dt*E
J = ideal([E*L-1/2, E*E+1/6, L*L+1/2, E*L*c-c*1/2])
L*L+1/2])
print( Dt_E.reduce(J) )
3 | No.3 Revision |
One can have a better control such substitutions using polynomial machinery, reducing a polynomial modulo the ideal generated by desired substitutions:
K.< K.<L, E, t, c> = QQ[]
D=(1-c)*(L+3*E)
Dt=D-t*E
Dt_E=Dt*E
J = ideal([E*L-1/2, E*E+1/6, L*L+1/2])
print( Dt_E.reduce(J) )