1 | initial version |
sage: R.<x> = PolynomialRing(GF(2))
sage: f = x^3 - 1
sage: g = x - 1
sage: f // g
x^2 + x + 1
sage: type(f // g)
<class 'sage.rings.polynomial.polynomial_gf2x.Polynomial_GF2X'>
sage: (f // g).parent() is R
True
Or if you have an element of the fraction field which you know has a unit in the denominator, you can convert:
sage: R(f / g)
x^2 + x + 1
2 | No.2 Revision |
Or if you have an element of the fraction field which you know has equals a fraction with a unit in the denominator, you can convert:convert it into an element of R
:
sage: R(f / g)
x^2 + x + 1
3 | No.3 Revision |
Like this:
sage: R.<x> = PolynomialRing(GF(2))
sage: f = x^3 - 1
sage: g = x - 1
sage: f // g
x^2 + x + 1
sage: type(f // g)
<class 'sage.rings.polynomial.polynomial_gf2x.polynomial_gf2x'="">
'sage.rings.polynomial.polynomial_gf2x.Polynomial_GF2X'>
sage: (f // g).parent() is R
TrueTrue
Or if you have an element of the fraction field which equals a fraction with a unit in the denominator, you can convert it into an element of R
:
sage: R(f / g)
x^2 + x + 1