Solutions:
Integer(1)
instead of 1
.E.lift_x(E.base_field()(1))
or E.lift_x(QQ(1))
![]() | 2 | No.2 Revision |
Solutions:
Integer(1)
instead of 1
.I could also have done something like: E.lift_x(E.base_field()(1))
or E.lift_x(QQ(1))
from sage.all import EllipticCurve, QQ, Integer E = EllipticCurve('37a'); E Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field E.lift_x(Integer(1)) (1 : 0 : 1) E.lift_x(E.base_field()(1)) (1 : 0 : 1) E.lift_x(QQ(1)) (1 : 0 : 1)
![]() | 3 | No.3 Revision |
Solutions:
Integer(1)
instead of 1
.I could also have done something like: E.lift_x(E.base_field()(1))
or E.lift_x(QQ(1))
>>> from sage.all import EllipticCurve, QQ, Integer>>> E = EllipticCurve('37a'); EElliptic Curve defined by y^2 + y = x^3 - x over Rational Field>>> E.lift_x(Integer(1))(1 : 0 : 1)>>> E.lift_x(E.base_field()(1))(1 : 0 : 1)>>> E.lift_x(QQ(1))(1 : 0 :1)1)