1 | initial version |
Solutions:
Integer(1)
instead of 1
.E.lift_x(E.base_field()(1))
or E.lift_x(QQ(1))
2 | No.2 Revision |
Solutions:
Integer(1)
instead of 1
.E.lift_x(E.base_field()(1))
or E.lift_x(QQ(1))
from sage.all import EllipticCurve, QQ, Integer E = EllipticCurve('37a'); E Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field E.lift_x(Integer(1)) (1 : 0 : 1) E.lift_x(E.base_field()(1)) (1 : 0 : 1) E.lift_x(QQ(1)) (1 : 0 : 1)
3 | No.3 Revision |
Solutions:
Integer(1)
instead of 1
.E.lift_x(E.base_field()(1))
or E.lift_x(QQ(1))
>>>from sage.all import EllipticCurve, QQ, Integer