| 1 | initial version |
Solutions:
Integer(1) instead of 1.E.lift_x(E.base_field()(1)) or E.lift_x(QQ(1)) | 2 | No.2 Revision |
Solutions:
Integer(1) instead of 1.E.lift_x(E.base_field()(1)) or E.lift_x(QQ(1)) from sage.all import EllipticCurve, QQ, Integer E = EllipticCurve('37a'); E Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field E.lift_x(Integer(1)) (1 : 0 : 1) E.lift_x(E.base_field()(1)) (1 : 0 : 1) E.lift_x(QQ(1)) (1 : 0 : 1)
| 3 | No.3 Revision |
Solutions:
Integer(1) instead of 1.E.lift_x(E.base_field()(1)) or E.lift_x(QQ(1))>>>from sage.all import EllipticCurve, QQ, Integer
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.