1 | initial version |
For example:
def f(z):
t = z + z^2
return t/(1-t)
R.<a,b,c> = PowerSeriesRing(QQ,default_prec=10)
g = (1-(f(a)+f(b)+f(c))).add_bigoh(10)^(-1)
print( g.coefficients()[a^3*b^3*c^3] )
For small degrees, default_prec=
and .add_bigoh()
are not really needed but they will speed up things / save memory when degrees of interest are large.
2 | No.2 Revision |
For example:
def f(z):
t = z (z + z^2
z^2).add_bigoh(10)
return t/(1-t)
R.<a,b,c> = PowerSeriesRing(QQ,default_prec=10)
g = (1-(f(a)+f(b)+f(c))).add_bigoh(10)^(-1)
(1-(f(a)+f(b)+f(c)))^(-1)
print( g.coefficients()[a^3*b^3*c^3] )
For small degrees, default_prec=
and .add_bigoh()
are not really needed but they will speed up things / save memory when degrees of interest are large.
3 | No.3 Revision |
For example:
myprec = 10
def f(z):
t = (z + z^2).add_bigoh(10)
z^2).add_bigoh(myprec)
return t/(1-t)
R.<a,b,c> = PowerSeriesRing(QQ,default_prec=10)
PowerSeriesRing(QQ,default_prec=myprec)
g = (1-(f(a)+f(b)+f(c)))^(-1)
print( g.coefficients()[a^3*b^3*c^3] )
For small degrees, default_prec=
and .add_bigoh()
are not really needed but they will speed up things / save memory when degrees of interest are large.