Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

For example:

def f(z):
    t = z + z^2
    return t/(1-t)

R.<a,b,c> = PowerSeriesRing(QQ,default_prec=10)
g = (1-(f(a)+f(b)+f(c))).add_bigoh(10)^(-1)
print( g.coefficients()[a^3*b^3*c^3] )

For small degrees, default_prec= and .add_bigoh() are not really needed but they will speed up things / save memory when degrees of interest are large.

For example:

def f(z):
    t = z (z + z^2
z^2).add_bigoh(10)
    return t/(1-t)

R.<a,b,c> = PowerSeriesRing(QQ,default_prec=10)
g = (1-(f(a)+f(b)+f(c))).add_bigoh(10)^(-1)
(1-(f(a)+f(b)+f(c)))^(-1)
print( g.coefficients()[a^3*b^3*c^3] )

For small degrees, default_prec= and .add_bigoh() are not really needed but they will speed up things / save memory when degrees of interest are large.

For example:

myprec = 10
def f(z):
    t = (z + z^2).add_bigoh(10)
z^2).add_bigoh(myprec)
    return t/(1-t)

R.<a,b,c> = PowerSeriesRing(QQ,default_prec=10)
PowerSeriesRing(QQ,default_prec=myprec)
g = (1-(f(a)+f(b)+f(c)))^(-1)
print( g.coefficients()[a^3*b^3*c^3] )

For small degrees, default_prec= and .add_bigoh() are not really needed but they will speed up things / save memory when degrees of interest are large.