1 | initial version |
The issue is in the definition of R
. From the documentation for PowerSeriesRIng
, one of the arguments is
So if you want higher precision than degree 20, you have to specify that when you define the ring:
R.<x> = PowerSeriesRing(ZZ, 51)
f25 = 1/(1-x^25)
print(f25)
gives 1 + x^25 + x^50 + O(x^51)
while
R.<x> = PowerSeriesRing(ZZ, 200)
f25 = 1/(1-x^25)
print(f25)
gives 1 + x^25 + x^50 + x^75 + x^100 + x^125 + x^150 + x^175 + O(x^200)
.
2 | No.2 Revision |
The issue is in the definition of R
. From the documentation for
, one of the arguments isPowerSeriesRIngPowerSeriesRing
So if you want higher precision than degree 20, you have to specify that when you define the ring:
R.<x> = PowerSeriesRing(ZZ, 51)
f25 = 1/(1-x^25)
print(f25)
gives 1 + x^25 + x^50 + O(x^51)
while
R.<x> = PowerSeriesRing(ZZ, 200)
f25 = 1/(1-x^25)
print(f25)
gives 1 + x^25 + x^50 + x^75 + x^100 + x^125 + x^150 + x^175 + O(x^200)
.