| 1 | initial version |
The issue is in the definition of R. From the documentation for PowerSeriesRIng, one of the arguments is
So if you want higher precision than degree 20, you have to specify that when you define the ring:
R.<x> = PowerSeriesRing(ZZ, 51)
f25 = 1/(1-x^25)
print(f25)
gives 1 + x^25 + x^50 + O(x^51) while
R.<x> = PowerSeriesRing(ZZ, 200)
f25 = 1/(1-x^25)
print(f25)
gives 1 + x^25 + x^50 + x^75 + x^100 + x^125 + x^150 + x^175 + O(x^200).
| 2 | No.2 Revision |
The issue is in the definition of R. From the documentation for , one of the arguments isPowerSeriesRIngPowerSeriesRing
So if you want higher precision than degree 20, you have to specify that when you define the ring:
R.<x> = PowerSeriesRing(ZZ, 51)
f25 = 1/(1-x^25)
print(f25)
gives 1 + x^25 + x^50 + O(x^51) while
R.<x> = PowerSeriesRing(ZZ, 200)
f25 = 1/(1-x^25)
print(f25)
gives 1 + x^25 + x^50 + x^75 + x^100 + x^125 + x^150 + x^175 + O(x^200).
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.