1 | initial version |
One way is:
var('k')
assume(x>-1)
assume(x<1)
(4*sum(x^(2*k), k, 0, oo)+sum(x^(2*k+1), k, 0, oo)/4).combine()
-1/4*(x + 16)/(x^2 - 1)
2 | No.2 Revision |
One way is:
var('k')
assume(x>-1)
assume(x<1)
(4*sum(x^(2*k), k, 0, oo)+sum(x^(2*k+1), k, 0, oo)/4).combine()
-1/4*(x + 16)/(x^2 - 1)
A more automatic version:
var('x k')
assume(k,'integer')
w(k)=4^((-1)^k)*x^k
a(k)=w(k=2*k).full_simplify()
b(k)=w(k=2*k+1).full_simplify();b
(sum(a(k),k,0,oo)+sum(b(k),k,0,oo)).combine()
-1/4*(x + 16)/(x^2 - 1)
3 | No.3 Revision |
One way is:
var('k')
assume(x>-1)
assume(x<1)
(4*sum(x^(2*k), k, 0, oo)+sum(x^(2*k+1), k, 0, oo)/4).combine()
-1/4*(x + 16)/(x^2 - 1)
A more automatic version:
var('x k')
assume(k,'integer')
w(k)=4^((-1)^k)*x^k
a(k)=w(k=2*k).full_simplify()
b(k)=w(k=2*k+1).full_simplify();b
(sum(a(k),k,0,oo)+sum(b(k),k,0,oo)).combine()
-1/4*(x + 16)/(x^2 - 1)
(assuming that both series converge)
4 | No.4 Revision |
One way is:
var('k')
assume(x>-1)
assume(x<1)
(4*sum(x^(2*k), k, 0, oo)+sum(x^(2*k+1), k, 0, oo)/4).combine()
-1/4*(x + 16)/(x^2 - 1)
A more automatic version:
var('x k')
assume(k,'integer')
w(k)=4^((-1)^k)*x^k
a(k)=w(k=2*k).full_simplify()
b(k)=w(k=2*k+1).full_simplify();b
b(k)=w(k=2*k+1).full_simplify()
(sum(a(k),k,0,oo)+sum(b(k),k,0,oo)).combine()
-1/4*(x + 16)/(x^2 - 1)
(assuming that both series converge)