1 | initial version |
The subs
method for polynomi
2 | No.2 Revision |
The subs
method for polynomipolynomials is not an analog of SR.subs
!
sage: a=SR.var("a")
sage: R1.<x>=SR[]
sage: R2.<y,z>=SR[]
sage: x.subs?
prints
Docstring:
Identical to "self(*x)".
See the docstring for "__call__()".
EXAMPLES:
sage: R.<x> = QQ[]
sage: f = x^3 + x - 3
sage: f.subs(x=5)
127
sage: f.subs(5)
127
sage: f.subs({x:2})
7
sage: f.subs({})
x^3 + x - 3
sage: f.subs({'x':2})
Traceback (most recent call last):
etc... Compare with :
sage: y.subs?
Signature: y.subs(fixed=None, **kw)
Docstring:
Fix some given variables in a given multivariate polynomial and
return the changed multivariate polynomials. The polynomial itself
is not affected. The variable, value pairs for fixing are to be
provided as a dictionary of the form "{variable: value}".
This is a special case of evaluating the polynomial with some of
the variables constants and the others the original variables.
INPUT:
* "fixed" - (optional) dictionary of inputs
* "**kw" - named parameters
OUTPUT: new "MPolynomial"
EXAMPLES:
sage: R.<x,y> = QQbar[] # optional - sage.rings.number_field
sage: f = x^2 + y + x^2*y^2 + 5 # optional - sage.rings.number_field
sage: f((5, y)) # optional - sage.rings.number_field
25*y^2 + y + 30
sage: f.subs({x: 5}) # optional - sage.rings.number_field
25*y^2 + y + 30
As far as I understand it, (a*x).subs(a=1)
should have raised an error.
Consider yelping on sage-support...
HTH,