1 | initial version |
The system can be docoupled
var('th')
s=solve([sin(th)], [th], to_poly_solve='force')[0];s
th == pi*z1698
(z1698 is an arbitrary integer constant)
Easy access to the constant:
k=s.rhs().variables()[0];k
z1698
Second equation is x=cos(th)
assume(k,'integer')
cos(pi*k).full_simplify()
(-1)^z1698
2 | No.2 Revision |
The system can be docoupled
var('th')
s=solve([sin(th)], [th], to_poly_solve='force')[0];s
th == pi*z1698
(z1698 is an arbitrary integer constant)
Easy access to the constant:To obtain nicer output:
k=s.rhs().variables()[0];k
var('k')
assume(k,'integer')
z=s.rhs().variables()[0]
th==s.rhs().subs(z==k)
z1698
th == pi*k
x==cos(s.rhs().subs(z==k)).full_simplify()
x == (-1)^k
Second equation is x=cos(th)
assume(k,'integer')
cos(pi*k).full_simplify()
(-1)^z1698