Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Define a polynomial ring over the integers modulo nine.

Then define your polynomials.

They will reduce modulo nine automatically.

Then you can reduce one polynomial modulo the other one.

Step by step below.

Define the polynomial ring and the two polynomials:

sage: R.<x> = Zmod(9)['x']
sage: a = (22835963083295358096932575511191922182123945984*x^40
....:      + 456719261665907161938651510223838443642478919680*x^39
....:      - 949119715649463320903760169683914265694526504960*x^38
....:      - 74438103413079337596594904736638418838042150174720*x^37
....:      - 211966311223616472653064458230223650062515432325120*x^36
....:      + 5699423076536127631354075023203536650831985341628416*x^35
....:      + 28973596255008264172921747247784413655190430306795520*x^34
....:      - 271995774077019828088650443324511604201030917638062080*x^33
....:      - 1867697404327342199267901249360368498941431933516644352*x^32
....:      + 9056796651291403018168478696099136247382279833599868928*x^31
....:      + 79160624263907039138284570805006392617165984624088711168*x^30
....:      - 223551997508102686121059656283668963809997686306850734080*x^29
....:      - 2458991015411203904019832329162025635890321461058054651904*x^28
....:      + 4260693753881507670321728714982887826581938225381688475648*x^27
....:      + 59071293374791879685378907558855333817814530563406754217984*x^26
....:      - 65166805833928613316698470531587698330832804559521753071616*x^25
....:      - 1131757178880074916089566167507231334194665050735930352074752*x^24
....:      + 843273738240957848823393929862457096912314552519743678447616*x^23
....:      + 17612018891685450913773925408995240476326126279055993164791808*x^22
....:      - 9965070460907997689837650917987090430658787607861126978600960*x^21
....:      - 224803412228839542185624982039516671368355084084003095634247680*x^20
....:      + 115376363264002396798805411172610298752130761902895261355606016*x^19
....:      + 2360934383698977135600868106052207944902529771066700907860197376*x^18
....:      - 1308815542039402425703070866082728213909461400374939017803726848*x^17
....:      - 2033774651111365686863631947820879710270359595089530799861530624*x^16
....:      + 13558465130296871278633915980747022983007195978102160591142518784*x^15
....:      + 142298688018343424254395657862764431521447510737554686159576104960*x^14
....:      - 118833592326356595084649993445344253636179846197802558968828002304*x^13
....:      - 794065401834625006842542559429023479028263847219436978179087007744*x^12
....:      + 835819614910693852323042241683734160878949541950181684520436105216*x^11
....:      + 3426759016172348767255673212872820400903705074714452879983524184064*x^10
....:      - 4539247226522701303816038738989886579860962357232685201849757728768*x^9
....:      - 10838172582209345115431209424474859020815749759396823997114335887360*x^8
....:      + 18274547905763525031916419971549097309724446260463287119585027817472*x^7
....:      + 22538630042118410739462196918476504623707986472870448264236719144960*x^6
....:      - 51332294008917127137813530189611197158096252035341181816762615726080*x^5
....:      - 22103913759369896814721471064671155443726673363949038033115234369536*x^4
....:      + 89873238137891007192684349732347354457768316526153757296330427465728*x^3
....:      - 13267389606759431082806583489371907647806512881963825978855904528384*x^2
....:      - 73919625356285467948968028725559984622542638023960350194728622704640*x
....:      + 42792357763031228784543461920827458618601064112586804151160697595809)
sage: b = (262144*x^6 + 786432*x^5 - 8306688*x^4 - 17924096*x^3 + 96045792*x^2
....:      + 105138912*x - 405220671)

Check that they have been reduced modulo nine.

sage: a
7*x^40 + 5*x^39 + x^38 + 3*x^36 + 6*x^35 + 6*x^34 + 3*x^33
+ 8*x^31 + x^30 + 8*x^29 + 3*x^27 + 3*x^24 + x^22 + 5*x^21
+ 7*x^20 + 3*x^17 + 3*x^16 + 3*x^8 + 3*x^7 + 3*x^5 + 3*x^4
sage: b
x^6 + 3*x^5 + 6*x^4 + 7*x^3 + 6*x^2 + 3*x

Compute the remainder of one modulo the other.

sage: a % b
0