1 | initial version |
First (but incidental): by naming your function 'uniform', you scratch the predefined uniform
function, which may be of some usefulness in your problem :
Signature: uniform(a, b)
Docstring:
Get a random number in the range [a, b).
Equivalent to a + (b-a) * random().
EXAMPLES:
sage: s = uniform(0, 1); s # random
0.111439293741037
sage: 0.0 <= s <= 1.0
True
sage: s = uniform(e, pi); s # random
0.5143475134191677*pi + 0.48565248658083227*e
sage: bool(e <= s <= pi)
True
But your problem isn't here. consider :
sage: def unif(x,a,b) :
....: T = RealDistribution('uniform', [a, b])
....: return T.distribution_function(x)
....:
That's what you did. but note that :
sage: type(unif)
<class 'function'>
Which tells you that your function is a Python (numeric) function (wrapping in Python a gsl
library C function), not a symbolic expression nor a symbolic function (a. k. a. callable symbolic expression).
This function can handle numerical arguments fine :
sage: unif(0.5,0,2)
0.5
but fails to handle symbolic arguments :
sage: unif(x,0,2)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
File /usr/local/sage-10/src/sage/symbolic/expression.pyx:1962, in sage.symbolic.expression.Expression.__float__()
1961 try:
-> 1962 ret = float(self._eval_self(float))
1963 except TypeError:
File /usr/local/sage-10/src/sage/symbolic/expression.pyx:1644, in sage.symbolic.expression.Expression._eval_self()
1643 else:
-> 1644 raise TypeError("cannot evaluate symbolic expression to a numeric value")
1645
TypeError: cannot evaluate symbolic expression to a numeric value
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
File /usr/local/sage-10/src/sage/symbolic/expression.pyx:1965, in sage.symbolic.expression.Expression.__float__()
1964 try:
-> 1965 c = (self._eval_self(complex))
1966 if imag(c) == 0:
File /usr/local/sage-10/src/sage/symbolic/expression.pyx:1644, in sage.symbolic.expression.Expression._eval_self()
1643 else:
-> 1644 raise TypeError("cannot evaluate symbolic expression to a numeric value")
1645
TypeError: cannot evaluate symbolic expression to a numeric value
Here is the source of your problem, plainly stated.
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
Cell In [50], line 1
----> 1 unif(x,Integer(0),Integer(2))
Cell In [46], line 3, in unif(x, a, b)
1 def unif(x,a,b) :
2 T = RealDistribution('uniform', [a, b])
----> 3 return T.distribution_function(x)
File /usr/local/sage-10/src/sage/probability/probability_distribution.pyx:851, in sage.probability.probability_distribution.RealDistribution.distribution_function()
849 """
850 if self.distribution_type == uniform:
--> 851 return sage.rings.real_double.RDF(gsl_ran_flat_pdf(x, self.parameters[0], self.parameters[1]))
852 elif self.distribution_type == gaussian:
853 return sage.rings.real_double.RDF(gsl_ran_gaussian_pdf(x, self.parameters[0]))
File /usr/local/sage-10/src/sage/symbolic/expression.pyx:1971, in sage.symbolic.expression.Expression.__float__()
1969 raise
1970 except TypeError:
-> 1971 raise TypeError("unable to simplify to float approximation")
1972 return ret
1973
TypeError: unable to simplify to float approximation
Therefore, you cannot pass `unif` to `integral` whose docstring states :
Return an indefinite or definite integral of an object "x".
First call "x.integral()" and if that fails make an object and
integrate it using Maxima, maple, etc, as specified by algorithm.
For symbolic expression calls "sage.calculus.calculus.integral()" -
see this function for available options.
Checking that unif
has neither integral
nor maxima
, gap
, etc... methods is left to the reader as a sanitary exercise.
BTW : brute force nested integrations is probably not the "right" way to tackle your problem. You should look up Convolution and Characteristic function. And think...
HTH,