| 1 | initial version |
A possible solution is to compute echelon form over 2-adic numbers and then change the ring to Zmod(16) - like this:
a = matrix(Qp(2), [[1, 1], [1, 1]])
b = a.echelon_form().change_ring(Zmod(16))
| 2 | No.2 Revision |
A possible solution is to compute echelon form over 2-adic numbers and then change the ring to Zmod(16) - like this:
a = matrix(Qp(2), matrix(Zmod(16), [[1, 1], [1, 1]])
b = a.echelon_form().change_ring(Zmod(16))
a.change_ring(Qp(2)).echelon_form().change_ring(Zmod(16))
| 3 | No.3 Revision |
A Since $16=2^4$, a possible solution is to compute echelon form over 2-adic numbers and then change the ring to Zmod(16) - like this:
a = matrix(Zmod(16), [[1, 1], [1, 1]])
b = a.change_ring(Qp(2)).echelon_form().change_ring(Zmod(16))
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.