1 | initial version |
You get a matrix of functions. Apply them :
sage: L.hessian()(x, y, λ)
[A*x^(α - 2)*y^β*(α - 1)*α A*x^(α - 1)*y^(β - 1)*α*β -p_x]
[A*x^(α - 1)*y^(β - 1)*α*β A*x^α*y^(β - 2)*(β - 1)*β -p_y]
[ -p_x -p_y 0]
HTH,
2 | No.2 Revision |
You get a matrix of functions. Apply them :
sage: L.hessian()(x, y, λ)
[A*x^(α - 2)*y^β*(α - 1)*α A*x^(α - 1)*y^(β - 1)*α*β -p_x]
[A*x^(α - 1)*y^(β - 1)*α*β A*x^α*y^(β - 2)*(β - 1)*β -p_y]
[ -p_x -p_y 0]
HTH,
EDIT : The peculiar Mathjax interpreter of this site does not typeset this correctly. LaTeX does (provided you replace the non-ASCII variable names wit their conventional replacement... or ui use XeLaTeX to typeset...).
3 | No.3 Revision |
You get a matrix of functions. Apply them :
sage: L.hessian()(x, y, λ)
[A*x^(α - 2)*y^β*(α - 1)*α A*x^(α - 1)*y^(β - 1)*α*β -p_x]
[A*x^(α - 1)*y^(β - 1)*α*β A*x^α*y^(β - 2)*(β - 1)*β -p_y]
[ -p_x -p_y 0]
HTH,
EDIT : The peculiar Mathjax interpreter of this site does not typeset this correctly. correctly (ignores the linebreaks). LaTeX does (provided you replace the non-ASCII variable names wit their conventional replacement... or ui use XeLaTeX to typeset...).typeset...). Trying HTML is no more successful (same problem).
4 | No.4 Revision |
You get a matrix of functions. Apply them :
sage: L.hessian()(x, y, λ)
[A*x^(α - 2)*y^β*(α - 1)*α A*x^(α - 1)*y^(β - 1)*α*β -p_x]
[A*x^(α - 1)*y^(β - 1)*α*β A*x^α*y^(β - 2)*(β - 1)*β -p_y]
[ -p_x -p_y 0]
HTH,
EDIT NOTE : The peculiar Mathjax interpreter of this site does not typeset this correctly (ignores the linebreaks). LaTeX does (provided you replace the non-ASCII variable names wit their conventional replacement... or ui use XeLaTeX to typeset...). Trying HTML is no more successful (same problem).
I have search for hessian? but there is no entry in the online documentation.
L.hessian?
prints :
Docstring:
Compute the hessian of a function. This returns a matrix components
are the 2nd partial derivatives of the original function.
EXAMPLES:
sage: x,y = var('x y')
sage: f = x^2+y^2
sage: f.hessian()
[2 0]
[0 2]
sage: g(x,y) = x^2+y^2
sage: g.hessian()
[(x, y) |--> 2 (x, y) |--> 0]
[(x, y) |--> 0 (x, y) |--> 2]
Init docstring: Initialize self. See help(type(self)) for accurate signature.
File: /usr/local/sage-10/src/sage/symbolic/expression.pyx
Type: builtin_function_or_method
HTH,
5 | No.5 Revision |
You get a matrix of functions. functions :
sage: L.hessian().parent()
Full MatrixSpace of 3 by 3 dense matrices over Callable function ring with arguments (x, y, λ)
Apply them :
sage: L.hessian()(x, y, λ)
[A*x^(α - 2)*y^β*(α - 1)*α A*x^(α - 1)*y^(β - 1)*α*β -p_x]
[A*x^(α - 1)*y^(β - 1)*α*β A*x^α*y^(β - 2)*(β - 1)*β -p_y]
[ -p_x -p_y 0]
NOTE : The peculiar Mathjax interpreter of this site does not typeset this correctly (ignores the linebreaks). LaTeX does (provided you replace the non-ASCII variable names wit their conventional replacement... or ui you use XeLaTeX to typeset...). Trying HTML is no more successful (same problem).
I have search for hessian? but there is no entry in the online documentation.
L.hessian?
prints :
Docstring:
Compute the hessian of a function. This returns a matrix components
are the 2nd partial derivatives of the original function.
EXAMPLES:
sage: x,y = var('x y')
sage: f = x^2+y^2
sage: f.hessian()
[2 0]
[0 2]
sage: g(x,y) = x^2+y^2
sage: g.hessian()
[(x, y) |--> 2 (x, y) |--> 0]
[(x, y) |--> 0 (x, y) |--> 2]
Init docstring: Initialize self. See help(type(self)) for accurate signature.
File: /usr/local/sage-10/src/sage/symbolic/expression.pyx
Type: builtin_function_or_method
HTH,