1 | initial version |
There are multiple ways to do so - here are just two options:
1) Via polynomial ideals and reduction:
R.<x,y,u> = QQ[]
f = x^2 + x^4 * y + y^3 + 1
J = ideal([x^2 - u])
g = J.reduce(f)
2) Via symbolic variables/substitution:
var('x y u')
f = x^2 + x^4 * y + y^3 + 1
w = SR.wild(0)
g = f.subs({x^w:u^floor(w/2)*x^(w-2*floor(w/2))})
2 | No.2 Revision |
There are multiple ways to do so - here are just two options:
1) Via polynomial ideals and reduction:
R.<x,y,u> = QQ[]
PolynomialRing(QQ, order='lex')
f = x^2 + x^4 * y + y^3 + 1
J = ideal([x^2 - u])
g = J.reduce(f)
2) Via symbolic variables/substitution:
var('x y u')
f = x^2 + x^4 * y + y^3 + 1
w = SR.wild(0)
g = f.subs({x^w:u^floor(w/2)*x^(w-2*floor(w/2))})