|   | 1 |  initial version  | 
The following worked for me, regarding the computation of $F(a, b)$.
E  = EllipticCurve('61a1')
Ep = E.change_ring(Qp(5))
Ef = Ep.formal_group()
F  = Ef.group_law(16)
# t1, t2 = F.parent().gens()
a  = Qp(5, prec=16)(5+3*5^2)
b  = Qp(5, prec=16)(5^2-2*5^3)
print( F.polynomial()(a, b) )
which delivers
5 + 4*5^2 + 2*5^3 + 3*5^4 + 3*5^7 + 3*5^8 + 3*5^9 + 4*5^10 + 3*5^11 + 5^12 + 3*5^13 + 2*5^14 + 5^15 + 3*5^16 + O(5^17)
Here, we may go wrong with the "last $p$-adic digits", when precisions do not match in the sense of the (default) precision used inside F.parent().
Note: Unfortunately the base ring
sage: R = Qp(5)
sage: R
5-adic Field with capped relative precision 20
sage: R.is_exact()
False
is not an exact field. So sage lets the programmer arrange for controlling precision in the performed operations.
 Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.
 
                
                Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.