You can extract the inverse from the following code:
sage: p = 2**64 - 2**32 + 1
sage: p
18446744069414584321
sage: F.<x> = GF(p^3, modulus=X^3 - X - 1)
sage: y, z = [root for root in (X^3 - X - 1).roots(ring=F, multiplicities=False) if root != x]
sage: R.<a,b,c> = PolynomialRing(F)
sage: e = a + b*x + c*x^2
sage: f = a + b*y + c*y^2
sage: g = a + b*z + c*z^2
sage: e*f*g
a^3 - a*b^2 + b^3 + 2*a^2*c + 18446744069414584318*a*b*c + a*c^2 - b*c^2 + c^3
Here, the number efg is in the field F≅Fq, q=p3, if the elements a,b,c are also there. So multiplying e with fg delivers the above element. So the inverse of e is: 1e=fga3+b3+c3−ab2−bc2+ac2+2a2c−3abc . Of course, we have "ugly" expressions for f,g in the numerator, which involve y,z and their squares:
sage: y
6700183068485440219*x^2 + 8396469466686423992*x + 7831040667286096068
sage: z
11746561000929144102*x^2 + 10050274602728160328*x + 10615703402128488253
sage: y^2
10050274602728160328*x^2 + 3915520333643048034*x + 11746561000929144103
sage: z^2
8396469466686423992*x^2 + 14531223735771536287*x + 6700183068485440220
(There are alternative solutions, but this works for me in a simplest manner.)