1 | initial version |
To change real precision in gp run gp.default("realprecision",256)
2 | No.2 Revision |
To change real precision in gp run gp.default("realprecision",256)
. However, this issue here is not in pari's precision per se, but in loss of precision when pari's object is converted to Sage (it may be a bug in cypari2
). Here is an equivalent code with explicit precision control (for both Sage and Pari) based on 'gp.' interface:
myC = ComplexField(200) # in bits
gp.default("realprecision",60) # in decimal digits
K.<a>=CyclotomicField(3)
E=gp.ellinit([0,0,0,0,-432*(1+3*a)^4])
S=gp.mfinit([63,2,Mod(37,63)])
L=gp.mfeigenbasis(S)
symb = gp.mfsymbol(L[1])
def phiE(c):
return myC(gp.mfsymboleval(symb,[gp.oo(), c]))*2*myC(pi)*I
print(phiE(gp.oo()))
print(phiE(0))
print(phiE(1/1000))
3 | No.3 Revision |
To change real precision in gp run gp.default("realprecision",256)
. However, this issue here is not in pari's precision per se, but in loss of precision when pari's object is converted to Sage (it may be a bug in cypari2
). Here is an equivalent code with explicit precision control (for both Sage and Pari) based on 'gp.' gp.
interface:
myC = ComplexField(200) # in bits
gp.default("realprecision",60) # in decimal digits
K.<a>=CyclotomicField(3)
E=gp.ellinit([0,0,0,0,-432*(1+3*a)^4])
S=gp.mfinit([63,2,Mod(37,63)])
L=gp.mfeigenbasis(S)
symb = gp.mfsymbol(L[1])
def phiE(c):
return myC(gp.mfsymboleval(symb,[gp.oo(), c]))*2*myC(pi)*I
print(phiE(gp.oo()))
print(phiE(0))
print(phiE(1/1000))
4 | No.4 Revision |
To change real precision in gp run gp.default("realprecision",256)
.
However, this issue here in your code is not in pari's precision per se, but in loss of precision when pari's object is converted to Sage (it may be a bug in cypari2
). Here is an equivalent code with explicit precision control (for both Sage and Pari) based on gp.
interface:
myC = ComplexField(200) # precision in bits
bits, we use it for conversion to Sage
gp.default("realprecision",60) # precision in decimal digits
digits for pari's routines
K.<a>=CyclotomicField(3)
E=gp.ellinit([0,0,0,0,-432*(1+3*a)^4])
S=gp.mfinit([63,2,Mod(37,63)])
L=gp.mfeigenbasis(S)
symb = gp.mfsymbol(L[1])
def phiE(c):
return myC(gp.mfsymboleval(symb,[gp.oo(), c]))*2*myC(pi)*I
print(phiE(gp.oo()))
print(phiE(0))
print(phiE(1/1000))