1 | initial version |
Introduce a new variable for each $\max$, say, $m_i$ and constraints that it is $\geq$ each argument of $\max$. For you example you get:
$$\begin{cases} m_1\geq r_0 + s_0\ m_1\geq 0\ m_2 \geq r_0 + s_1\ m_2\geq r_1 + s_0\ m_2\geq 0\ \dots\ m_1 + m_2 + m_3 + m_4 + m_5\quad \rightarrow\quad\max \end{cases} $$ This is solved via MILP - https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html
2 | No.2 Revision |
Introduce a new variable for each $\max$, say, $m_i$ and constraints that it is $\geq$ each argument of $\max$. For you example you get:
$$\begin{cases}
m_1\geq r_0 + s_0\
s_0\\
m_1\geq 0\
0\\
m_2 \geq r_0 + s_1\
s_1\\
m_2\geq r_1 + s_0\
s_0\\
m_2\geq 0\
\dots\
0\\
\dots\\
m_1 + m_2 + m_3 + m_4 + m_5\quad \rightarrow\quad\max
\end{cases}
$$
This is solved via MILP - https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html
3 | No.3 Revision |
Introduce a new variable for each $\max$, say, $m_i$ and constraints that it is $\geq$ each argument of $\max$. For you example you get:
$$\begin{cases}
m_1\geq r_0 + s_0\\
m_1\geq 0\\
m_2 \geq r_0 + s_1\\
m_2\geq r_1 + s_0\\
m_2\geq 0\\
\dots\\
m_1 + m_2 + m_3 + m_4 + m_5\quad \rightarrow\quad\max
m_5\ \rightarrow\ \min
\end{cases}
$$
This is solved via MILP - https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html
4 | No.4 Revision |
Introduce a new variable for each $\max$, say, $m_i$ say $m_i$, and constraints that it is $\geq$ each argument of $\max$.
$\max$, and in the objective function replace each $\max$ with the corresponding $m_i$.
For you your example you we get:
$$\begin{cases} m_1\geq r_0 + s_0\\ m_1\geq 0\\ m_2 \geq r_0 + s_1\\ m_2\geq r_1 + s_0\\ m_2\geq 0\\ \dots\\ m_1 + m_2 + m_3 + m_4 + m_5\ \rightarrow\ \min \end{cases} $$ This is solved via MILP - https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html
5 | No.5 Revision |
Introduce a new variable for each $\max$, say $m_i$, and constraints that it is $\geq$ each argument of $\max$, and $\max$. Then in the objective function replace each $\max$ with the corresponding $m_i$.
For your example we get:
$$\begin{cases} m_1\geq r_0 + s_0\\ m_1\geq 0\\ m_2 \geq r_0 + s_1\\ m_2\geq r_1 + s_0\\ m_2\geq 0\\ \dots\\ m_1 + m_2 + m_3 + m_4 + m_5\ \rightarrow\ \min \end{cases} $$ This is solved via MILP - https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html
6 | No.6 Revision |
Introduce a new variable for each $\max$, say $m_i$, and constraints that it is $\geq$ each argument of $\max$. Then in the objective function replace each $\max$ with the corresponding $m_i$. For your example we get:
$$\begin{cases}
m_1\geq r_0 + s_0\\
m_1\geq 0\\
m_2 \geq r_0 + s_1\\
m_2\geq r_1 + s_0\\
m_2\geq 0\\
\dots\\
m_1 + m_2 + m_3 + m_4 + m_5\ \rightarrow\ \min
\end{cases}
$$
This is Since all constraints here are linear, such a problem can be solved via MILP - https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html