Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

If i correctly understood the cyclic differential, the following pedestrian code should do the job...

def delta(f, i):
    """Implement $d_i$ on elements f of a free algebra with N generators.
    Here, we expect that i is among 0, 1, ... , N-1.

    Below, there is a commented print.
    For the test non-commutative polynomial f from

    F.<a,b,c> = FreeAlgebra(QQ)
    f = a^3*b^2*a*c*b + 3*a*b^3*c - 7*a^3

    it delivers:

    Derivating monomial a^3*b^2*a*c*b
    (alias [(a, 3), (b, 2), (a, 1), (c, 1), (b, 1)] as a list)
    with coefficient 1.

    Derivating monomial a*b^3*c
    (alias [(a, 1), (b, 3), (c, 1)] as a list)
    with coefficient 3.

    Derivating monomial a^3
    (alias [(a, 3)] as a list)
    with coefficient -7.

    Hope this explains the implementation now...    
    """
    F = f.parent()
    N = len(F.gens())
    if i not in range(N):
        return F(0)

    v = f.parent().gens()[i]    # and we cyclically differentiate w.r.t. v

    monomials = []    # so far, and we append monomials from derivations 
    for mon, mon_coeff in f:
        # print('Derivating monomial {}\n(alias {} as a list)\nwith coefficient {}.\n'
        #       .format(mon, list(mon), mon_coeff))
        mon_list = list(mon)
        L = len(mon_list)    # there are L entries in this list
        for j in range(L):
            if mon_list[j][0] == v:
                p = mon_list[j][1] * v^(mon_list[j][1] - 1) \
                    * prod([mon_list[(j + k) % L][0] ^ mon_list[(j + k) % L][1]
                            for k in range(1, L)])

                monomials.append(mon_coeff*p)
    return sum(monomials)

Test:

F.<a,b,c> = FreeAlgebra(QQ)
f = a^3*b^2*a*c*b + 3*a*b^3*c - 7*a^3
print(f'f = {f}')
print(f'delta0 f = {delta(f, 0)}')
print(f'delta1 f = {delta(f, 1)}')
print(f'delta2 f = {delta(f, 2)}')

This delivers:

f = -7*a^3 + 3*a*b^3*c + a^3*b^2*a*c*b
delta0 f = -21*a^2 + 3*b^3*c + 3*a^2*b^2*a*c*b + c*b*a^3*b^2
delta1 f = 9*b^2*c*a + a^3*b^2*a*c + 2*b*a*c*b*a^3
delta2 f = 3*a*b^3 + b*a^3*b^2*a

If i correctly understood the cyclic differential, the following pedestrian code should do the job...

def delta(f, i):
    """Implement $d_i$ on elements f of a free algebra with N generators.
    Here, we expect that i is among 0, 1, ... , N-1.

    Below, there is a commented print.
    For the test non-commutative polynomial f from

    F.<a,b,c> = FreeAlgebra(QQ)
    f = a^3*b^2*a*c*b + 3*a*b^3*c - 7*a^3

    it delivers:

    Derivating monomial a^3*b^2*a*c*b
    (alias [(a, 3), (b, 2), (a, 1), (c, 1), (b, 1)] as a list)
    with coefficient 1.

    Derivating monomial a*b^3*c
    (alias [(a, 1), (b, 3), (c, 1)] as a list)
    with coefficient 3.

    Derivating monomial a^3
    (alias [(a, 3)] as a list)
    with coefficient -7.

    Hope this explains the implementation now...    
    """
    F = f.parent()
    N = len(F.gens())
    if i not in range(N):
        return F(0)

    v = f.parent().gens()[i] F.gens()[i]    # and we cyclically differentiate w.r.t. v

    monomials = []    # so far, and we append monomials from derivations 
    for mon, mon_coeff in f:
        # print('Derivating monomial {}\n(alias {} as a list)\nwith coefficient {}.\n'
        #       .format(mon, list(mon), mon_coeff))
        mon_list = list(mon)
        L = len(mon_list)    # there are L entries in this list
        for j in range(L):
            if mon_list[j][0] == v:
                p = mon_list[j][1] * v^(mon_list[j][1] - 1) \
                    * prod([mon_list[(j + k) % L][0] ^ mon_list[(j + k) % L][1]
                            for k in range(1, L)])

                monomials.append(mon_coeff*p)
    return sum(monomials)

Test:

F.<a,b,c> = FreeAlgebra(QQ)
f = a^3*b^2*a*c*b + 3*a*b^3*c - 7*a^3
print(f'f = {f}')
print(f'delta0 f = {delta(f, 0)}')
print(f'delta1 f = {delta(f, 1)}')
print(f'delta2 f = {delta(f, 2)}')

This delivers:

f = -7*a^3 + 3*a*b^3*c + a^3*b^2*a*c*b
delta0 f = -21*a^2 + 3*b^3*c + 3*a^2*b^2*a*c*b + c*b*a^3*b^2
delta1 f = 9*b^2*c*a + a^3*b^2*a*c + 2*b*a*c*b*a^3
delta2 f = 3*a*b^3 + b*a^3*b^2*a