1 | initial version |
By doing
$\sqrt{-\frac{1}{f\left(r\right)^{2} \sin\left(r\right)^{2}}} - \frac{1}{\sqrt{-f\left(r\right)^{2} \sin\left(r\right)^{2}}} = \frac{i}{\sqrt{f\left(r\right)^{2} \sin\left(r\right)^{2}}}-\frac{1}{i\sqrt{f\left(r\right)^{2} \sin\left(r\right)^{2}}} = \frac{2i}{\sqrt{f\left(r\right)^{2} \sin\left(r\right)^{2}}}$
I wouldn't expect bool(eq==0)
to return True
.
You can deal with square roots using canonicalize_radical()
.
eq.canonicalize_radical()
returns $\frac{2 i}{f\left(r\right) \sin\left(r\right)}$.