| 1 | initial version |
By doing
$\sqrt{-\frac{1}{f\left(r\right)^{2} \sin\left(r\right)^{2}}} - \frac{1}{\sqrt{-f\left(r\right)^{2} \sin\left(r\right)^{2}}} = \frac{i}{\sqrt{f\left(r\right)^{2} \sin\left(r\right)^{2}}}-\frac{1}{i\sqrt{f\left(r\right)^{2} \sin\left(r\right)^{2}}} = \frac{2i}{\sqrt{f\left(r\right)^{2} \sin\left(r\right)^{2}}}$
I wouldn't expect bool(eq==0) to return True.
You can deal with square roots using canonicalize_radical().
eq.canonicalize_radical()
returns $\frac{2 i}{f\left(r\right) \sin\left(r\right)}$.
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.