Loading [MathJax]/jax/output/HTML-CSS/jax.js
Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

answered 3 years ago

Max Alekseyev gravatar image

Setting Y:=(lnX+0.0064)=ln(e0.0064X), we get an equation: YeY=0.08e0.0064, implying that Y=W(0.08e0.0064), where W is Lambert W function. Then X=eW(0.08e0.0064)0.0064.

In Sage:

exp(-lambert_w(-0.08/exp(0.0064)) - 0.0064 )

gives 1.08359901378819. You can also try other branches of W, like:

exp(-lambert_w(-0.08/exp(0.0064),1) - 0.0064 )

which gives 0.563525163706476, etc.

click to hide/show revision 2
No.2 Revision

Setting Y:=(lnX+0.0064)=ln(e0.0064X), we get an equation: YeY=0.08e0.0064, implying that Y=W(0.08e0.0064), where W is Lambert W function. function. Then X=eW(0.08e0.0064)0.0064.

In Sage:

exp(-lambert_w(-0.08/exp(0.0064)) - 0.0064 )

gives 1.08359901378819. You can also try other branches of W, like:

exp(-lambert_w(-0.08/exp(0.0064),1) - 0.0064 )

which gives 0.563525163706476, etc.

click to hide/show revision 3
No.3 Revision

Setting Y:=(lnX+0.0064)=ln(e0.0064X), we get an equation: YeY=0.08e0.0064, implying that Y=W(0.08e0.0064), where W is Lambert W function. Then X=eW(0.08e0.0064)0.0064.

In Sage:

exp(-lambert_w(-0.08/exp(0.0064)) - 0.0064 )

gives 1.08359901378819. You can also try other branches of W, like:

exp(-lambert_w(-0.08/exp(0.0064),1) exp(-lambert_w(1, -0.08/exp(0.0064)) - 0.0064 )

which gives 0.56352516370647658.6383141226570 - 91.0209263484521*I, etc.

click to hide/show revision 4
No.4 Revision

Setting Y:=(lnX+0.0064)=ln(e0.0064X), we get an equation: YeY=0.08e0.0064, implying that Y=W(0.08e0.0064), where W is Lambert W function. Then X=eW(0.08e0.0064)0.0064.

In Sage:

exp(-lambert_w(-0.08/exp(0.0064)) - 0.0064 )

gives 1.08359901378819. You can also try other branches of W, like:

exp(-lambert_w(1, exp(-lambert_w(-1, -0.08/exp(0.0064)) - 0.0064 )

which gives 58.6383141226570 - 91.0209263484521*I48.6340483659129, etc.

click to hide/show revision 5
No.5 Revision

Setting Y:=(lnX+0.0064)=ln(e0.0064X), we get an equation: YeY=0.08e0.0064, implying that Y=W(0.08e0.0064), where W is Lambert W function. Then X=eW(0.08e0.0064)0.0064.

In Sage:Sage we can define a function that computes X depending on a branch of W:

exp(-lambert_w(-0.08/exp(0.0064)) - 0.0064 )

gives 1.08359901378819. You can also try other branches of W, like:

exp(-lambert_w(-1, def X(branch=0):
    exp(-lambert_w(branch, -0.08/exp(0.0064)) - 0.0064 )

which Then X(0) gives 1.08359901378819, X(-1) gives 48.6340483659129, etc.and other branches give various complex solutions.

click to hide/show revision 6
No.6 Revision

Setting Y:=(lnX+0.0064)=ln(e0.0064X), we get an equation: YeY=0.08e0.0064, implying that Y=W(0.08e0.0064), where W is Lambert W function. Then X=eW(0.08e0.0064)0.0064.

In Sage we can define a function that computes X depending on a branch of W:

def X(branch=0):
    return exp(-lambert_w(branch, -0.08/exp(0.0064)) - 0.0064 )

Then X(0) gives 1.08359901378819, X(-1) gives 48.6340483659129, and other branches give various complex solutions.