1 | initial version |
Like this
sage: def PP(a,b,c):
....: return posets.ProductOfChains([a,b,c]).order_ideals_lattice()
sage: PP(2,2,2)
Finite lattice containing 20 element
2 | No.2 Revision |
Like this
sage: def PP(a,b,c):
....: return posets.ProductOfChains([a,b,c]).order_ideals_lattice()
sage: PP(2,2,2)
Finite lattice containing 20 element
for the full poset. Then you can take any principal order filter.
3 | No.3 Revision |
Like this
sage: def PP(a,b,c):
....: return posets.ProductOfChains([a,b,c]).order_ideals_lattice()
sage: PP(2,2,2)
Finite lattice containing 20 element
for the full poset. Then you can take any principal order filter.
EDIT Another way:
sage: P = PlanePartitions([4,3,2])
sage: q = P.random_element()
sage: qt = q.to_tableau()
sage: Poset(([x.to_tableau() for x in P if x.to_tableau() <= qt] ,lambda x,y: x<=y))
Finite poset containing 459 elements