1 | initial version |
Such expressions are given by continuants. Sage provides function continuant
for computing them - see https://doc.sagemath.org/html/en/reference/rings_standard/sage/arith/misc.html
2 | No.2 Revision |
Such expressions are given by continuants - namely, $p_n(a_0,\dots,a_n)= K_{n+1}(a_0,\dots,a_n)$ and $q_n(a_0,\dots,a_n)= K_n(a_1,\dots,a_n)$ . Sage provides function continuant
for computing them - see https://doc.sagemath.org/html/en/reference/rings_standard/sage/arith/misc.html
3 | No.3 Revision |
Such expressions are given by continuants - namely, $p_n(a_0,\dots,a_n)= K_{n+1}(a_0,\dots,a_n)$ and $q_n(a_0,\dots,a_n)= K_n(a_1,\dots,a_n)$ . Sage provides function continuant
for computing them - see https://doc.sagemath.org/html/en/reference/rings_standard/sage/arith/misc.html
Here is an example for $n=5$:
R.<a> = InfinitePolynomialRing(QQ)
print('p=', continuant( [a[i] for i in (0..5)]) )
print('q=', continuant( [a[i] for i in (1..5)]) )