| 1 | initial version |
(Not an answer, but a note needing more space than one allowed in a comment. I'll update this answer if necessary)
What version of Sage do you use ? At least with Sagemath 9.4.rc1, piecewise functions seem problematic :
sage: var("a, j, k, L")
(a, j, k, L)
sage: int1(a, j, k, L) = piecewise([[[0, 1/4], 1 * cos(pi * (j + 1) * a/L) * cos(pi * (k + 1) * a/L)], [(1/4, 3/4), 2 * cos(pi * (j + 1) * a/L) * cos(pi * (k + 1) * a/L)], [[3/4, 1], 1 * cos(pi * (j + 1) * a/L) * cos(pi * (k + 1) * a/L)]])
So far so good. but :
sage: int1(a, j, k, L)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-162-c48732677c56> in <module>
----> 1 int1(a, j, k, L)
/usr/local/sage-9/local/lib/python3.9/site-packages/sage/symbolic/expression.pyx in sage.symbolic.expression._eval_on_operands.new_f (build/cythonized/sage/symbolic/expression.cpp:70643)()
13102 new_args = list(ex._unpack_operands())
13103 new_args.extend(args)
> 13104 return f(ex, *new_args, **kwds)
13105 return new_f
13106
TypeError: __call__() takes from 3 to 4 positional arguments but 7 were given
Ditto when calling with numerical arguments. This could be a newly-introduced bug...
BTW, I do not see the point of using numerical integration in this specific case : your function $f_1$ can be described as :
$$ f_0 : \left( a, j, k, L \right) \ {\mapsto} \ \cos\left(\frac{\pi a j}{L} + \frac{\pi a}{L}\right) \cos\left(\frac{\pi a k}{L} + \frac{\pi a}{L}\right) $$
$$ f_1 : \begin{cases} f_0\left(a, j, k, L\right) & a < \frac{1}{4} \\ 2\,f_0\left(a, j, k, L\right) & a \geq \frac{1}{4} \wedge a \leq \frac{3}{4} \\ f_0\left(a, j, k, L\right) & a > \frac{3}{4} \end{cases} $$
Your integral $\displaystyle\int_0^1 f_1\left(a, j, k, l\right)\,\mathrm{d}a$ is simply $\displaystyle{\int_0^\frac{1}{4} f_0\left(a, j, k, l\right)\,\mathrm{d}a + \int_\frac{1}{4}^\frac{3}{4} 2\,f_0\left(a, j, k, l\right)\,\mathrm{d}a + \int_\frac{3}{4}^1 f_0\left(a, j, k, l\right)\,\mathrm{d}a}$.
Since
$$ \displaystyle{\int f_0\left(a, j, k, l\right)\,=\,\frac{{\left(L j - L k\right)} \sin\left(\frac{\pi a j}{L} + \frac{\pi a k}{L} + \frac{2 \, \pi a}{L}\right) - {\left(L j + L k + 2 \, L\right)} \sin\left(-\frac{\pi a j}{L} + \frac{\pi a k}{L}\right)}{2 \, {\left(\pi j^{2} - \pi k^{2} + 2 \, \pi j - 2 \, \pi k\right)}}} $$
your (definite) integral, which is a function of j, k and L, has an explicit (closed form) expression (which my laziness leaves to the reader as an exercise...).
HTH,
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.