| 1 | initial version |
You can first solve the integral symbolically :
sage: i = integral(exp(-1/x)/x,x,0,1)
sage: i
-Ei(-1)
Then, you can convert the result into some real field approximation with high precision:
sage: F = RealIntervalField(200)
sage: F
Real Interval Field with 200 bits of precision
sage: F(i)
0.21938393439552027367716377546012164903104729340690820757797849?
Note that, compared to RealField(200), you have the guaranty that the actual value belongs to some interval:
sage: F(i).endpoints()
(0.21938393439552027367716377546012164903104729340690820757797,
0.21938393439552027367716377546012164903104729340690820757798)
Note : RealBallField(200) which is supposed to be faster fails with a RecursionError: maximum recursion depth exceeded
| 2 | No.2 Revision |
You can first solve the integral symbolically :
sage: i = integral(exp(-1/x)/x,x,0,1)
sage: i
-Ei(-1)
You can get information about the Ei function with:
sage: Ei?
Then, you can convert the result into some real field approximation with high precision:
sage: F = RealIntervalField(200)
sage: F
Real Interval Field with 200 bits of precision
sage: F(i)
0.21938393439552027367716377546012164903104729340690820757797849?
Note that, compared to RealField(200), you have the guaranty that the actual value belongs to some interval:
sage: F(i).endpoints()
(0.21938393439552027367716377546012164903104729340690820757797,
0.21938393439552027367716377546012164903104729340690820757798)
Note : RealBallField(200) which is supposed to be faster fails with a RecursionError: maximum recursion depth exceeded
| 3 | No.3 Revision |
You can first solve the integral symbolically :
sage: i = integral(exp(-1/x)/x,x,0,1)
sage: i
-Ei(-1)
You can get information about the Ei function with:
sage: Ei?
Then, you can convert the result into some real field approximation with high precision:
sage: F = RealIntervalField(200)
sage: F
Real Interval Field with 200 bits of precision
sage: F(i)
0.21938393439552027367716377546012164903104729340690820757797849?
Note that, compared to RealField(200), you have the guaranty that the actual value belongs to some interval:
sage: F(i).endpoints()
(0.21938393439552027367716377546012164903104729340690820757797,
0.21938393439552027367716377546012164903104729340690820757798)
Note Note : RealBallField(200) which is supposed to be faster fails with a RecursionError: maximum recursion depth exceeded This issue is now tracked at trac ticket 32301
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.