1 | initial version |
You can first solve the integral symbolically :
sage: i = integral(exp(-1/x)/x,x,0,1)
sage: i
-Ei(-1)
Then, you can convert the result into some real field approximation with high precision:
sage: F = RealIntervalField(200)
sage: F
Real Interval Field with 200 bits of precision
sage: F(i)
0.21938393439552027367716377546012164903104729340690820757797849?
Note that, compared to RealField(200)
, you have the guaranty that the actual value belongs to some interval:
sage: F(i).endpoints()
(0.21938393439552027367716377546012164903104729340690820757797,
0.21938393439552027367716377546012164903104729340690820757798)
Note : RealBallField(200)
which is supposed to be faster fails with a RecursionError: maximum recursion depth exceeded
2 | No.2 Revision |
You can first solve the integral symbolically :
sage: i = integral(exp(-1/x)/x,x,0,1)
sage: i
-Ei(-1)
You can get information about the Ei
function with:
sage: Ei?
Then, you can convert the result into some real field approximation with high precision:
sage: F = RealIntervalField(200)
sage: F
Real Interval Field with 200 bits of precision
sage: F(i)
0.21938393439552027367716377546012164903104729340690820757797849?
Note that, compared to RealField(200)
, you have the guaranty that the actual value belongs to some interval:
sage: F(i).endpoints()
(0.21938393439552027367716377546012164903104729340690820757797,
0.21938393439552027367716377546012164903104729340690820757798)
Note : RealBallField(200)
which is supposed to be faster fails with a RecursionError: maximum recursion depth exceeded
3 | No.3 Revision |
You can first solve the integral symbolically :
sage: i = integral(exp(-1/x)/x,x,0,1)
sage: i
-Ei(-1)
You can get information about the Ei
function with:
sage: Ei?
Then, you can convert the result into some real field approximation with high precision:
sage: F = RealIntervalField(200)
sage: F
Real Interval Field with 200 bits of precision
sage: F(i)
0.21938393439552027367716377546012164903104729340690820757797849?
Note that, compared to RealField(200)
, you have the guaranty that the actual value belongs to some interval:
sage: F(i).endpoints()
(0.21938393439552027367716377546012164903104729340690820757797,
0.21938393439552027367716377546012164903104729340690820757798)
Note Note : RealBallField(200)
which is supposed to be faster fails with a RecursionError: maximum recursion depth exceeded
This issue is now tracked at trac ticket 32301