|   | 1 |  initial version  | 
I am not sure about the notation $\lambda'$ so let me assume that it is the conjugate.
First, to build a matrix and to , you have to index the partitions, which is easy with the enumerate function:
    sage: n = 6
    sage: P = Partitions(n)
    sage: m = matrix(ZZ, P.cardinality())
    sage: list(enumerate(P))
    [(0, [6]),
     (1, [5, 1]),
     (2, [4, 2]),
     (3, [4, 1, 1]),
     (4, [3, 3]),
     (5, [3, 2, 1]),
     (6, [3, 1, 1, 1]),
     (7, [2, 2, 2]),
     (8, [2, 2, 1, 1]),
     (9, [2, 1, 1, 1, 1]),
     (10, [1, 1, 1, 1, 1, 1])]
In the other way, given a partition, you need to be able to find its index, which is doable with this dictionary:
sage: part_to_int = {p:i for i,p in enumerate(P)}
Now, you can construct your matrix:
sage: for i,p in enumerate(P):
....:     j = part_to_int[p.conjugate()]
....:     m[i,j] = 1
You have:
sage: m
[0 0 0 0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0 0 0 0]
sage: m^2
[1 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 1]
If $\lambda'$ does not denote the conjugate, you can adapt by replacing p.conjugate() with your favorite function.
|   | 2 |  No.2 Revision  | 
I am not sure about the notation $\lambda'$ so let me assume that it is the conjugate.
First, to build a matrix and to , matrix, you have to index the partitions, which is easy with the enumerate function:
    function:
sage: n = 6
 sage: P = Partitions(n)
 sage: m = matrix(ZZ, P.cardinality())
 sage: list(enumerate(P))
 [(0, [6]),
  (1, [5, 1]),
  (2, [4, 2]),
  (3, [4, 1, 1]),
  (4, [3, 3]),
  (5, [3, 2, 1]),
  (6, [3, 1, 1, 1]),
  (7, [2, 2, 2]),
  (8, [2, 2, 1, 1]),
  (9, [2, 1, 1, 1, 1]),
  (10, [1, 1, 1, 1, 1, 1])]1])]
In the other way, given a partition, you need to be able to find its index, which is doable with this dictionary:
sage: part_to_int = {p:i for i,p in enumerate(P)}
Now, you can construct your matrix:
sage: for i,p in enumerate(P):
....:     j = part_to_int[p.conjugate()]
....:     m[i,j] = 1
You have:
sage: m
[0 0 0 0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0 0 0 0]
sage: m^2
[1 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 1]
If $\lambda'$ does not denote the conjugate, you can adapt by replacing p.conjugate() with your favorite function.
 Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.
 
                
                Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.