Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

One can rely on the Thue equation solver present in PARI. Here is a sample code for solving the equation $f(x,y)=n$:

def solvethue(f,n):
    return gp("thue(thueinit(%s),%s)" % (f.subs({f.variables()[1]:1}),n))

R.<x,y> = PolynomialRing(QQ)
print( solvethue(x^3+y^3,1) )

One can rely on the Thue equation solver present in PARI. Here is a sample code for solving the equation $f(x,y)=n$:

def solvethue(f,n):
    t = gp.thueinit( f.subs({f.variables()[1]:1}) )
    return gp("thue(thueinit(%s),%s)" % (f.subs({f.variables()[1]:1}),n))
gp.thue(t,n)

R.<x,y> = PolynomialRing(QQ)
print( solvethue(x^3+y^3,1) )

One can rely on the Thue equation solver present in PARI. Here is a sample code for solving the equation $f(x,y)=n$:

def solvethue(f,n):
    assert f.is_homogeneous()
    t = gp.thueinit( f.subs({f.variables()[1]:1}) )
    return gp.thue(t,n)

R.<x,y> = PolynomialRing(QQ)
print( solvethue(x^3+y^3,1) )

One can rely on the Thue equation solver present in PARI. Here is a sample code for solving the equation $f(x,y)=n$:

def solvethue(f,n):
    assert f.is_homogeneous()
    t = gp.thueinit( f.subs({f.variables()[1]:1}) )
    return gp.thue(t,n)
gp.thue(t,n).sage()

R.<x,y> = PolynomialRing(QQ)
print( solvethue(x^3+y^3,1) )

One can rely on the Thue equation solver present in PARI. Here is a sample code for solving the equation $f(x,y)=n$:

def solvethue(f,n):
    assert f.is_homogeneous()
    t = gp.thueinit( f.subs({f.variables()[1]:1}) )
    return gp.thue(t,n).sage()
gp.thue(f.subs({f.variables()[1]:1}), n).sage()

R.<x,y> = PolynomialRing(QQ)
print( solvethue(x^3+y^3,1) )