Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Do not use Dokchister implementation, but always the pari implementation.

sage: K = NumberField(x**2 + x + 1,'a')                                         
sage: Qbis = NumberField(x-1,'y')                                               
sage: KL = K.zeta_function()                                                    
sage: QL = Q.zeta_function()                                                    
sage: KL(-1)                                                                    
0.000000000000000
sage: QL(-1)                                                                    
-0.0833333333333333

so the quotient will be zero. You can use taylor series as follows

sage: KL.taylor_series(-1,4)                                                    
0.000000000000000 - 0.0269221622682875*z - 0.0573141973539488*z^2 - 0.0443122899350116*z^3 + O(z^4)

We also have L functions for Dirichlet characters.

sage: D = DirichletGroup(4)                                                     
sage: chi = D.gen(0)                                                            
sage: chi.lfunction()                                                           
PARI L-function associated to Dirichlet character modulo 4 of conductor 4 mapping 3 |--> -1

Do not use Dokchister implementation, but always the pari implementation.

sage: K = NumberField(x**2 + x + 1,'a')                                         
sage: Qbis Q = NumberField(x-1,'y')                       # using QQ should work, this is a workaround
sage: KL = K.zeta_function()                                                    
sage: QL = Q.zeta_function()                                                    
sage: KL(-1)                                                                    
0.000000000000000
sage: QL(-1)                                                                    
-0.0833333333333333

so the quotient will be zero. You can use taylor series as follows

sage: KL.taylor_series(-1,4)                                                    
0.000000000000000 - 0.0269221622682875*z - 0.0573141973539488*z^2 - 0.0443122899350116*z^3 + O(z^4)

We also have L functions for Dirichlet characters.

sage: D = DirichletGroup(4)                                                     
sage: chi = D.gen(0)                                                            
sage: chi.lfunction()                                                           
PARI L-function associated to Dirichlet character modulo 4 of conductor 4 mapping 3 |--> -1

Do not use Dokchister implementation, but always the pari implementation.

sage: K = NumberField(x**2 + x + 1,'a')                                         
sage: Q = NumberField(x-1,'y')           # using QQ should work, this is a workaround
sage: KL = K.zeta_function()                                                    
sage: QL = Q.zeta_function()                                                    
sage: KL(-1)                                                                    
0.000000000000000
sage: QL(-1)                                                                    
-0.0833333333333333

so the quotient will be zero. You can use taylor series as follows

sage: KL.taylor_series(-1,4)                                                    
0.000000000000000 - 0.0269221622682875*z - 0.0573141973539488*z^2 - 0.0443122899350116*z^3 + O(z^4)

We also have L functions for Dirichlet characters.

sage: D = DirichletGroup(4)                                                     
sage: chi = D.gen(0)                                                            
sage: chi.lfunction()                                                           
PARI L-function associated to Dirichlet character modulo 4 of conductor 4 mapping 3 |--> -1

Do not use Dokchister Dokchitser implementation, but always the pari implementation.

sage: K = NumberField(x**2 + x + 1,'a')                                         
sage: Q = NumberField(x-1,'y')          # using QQ should work, this is a workaround
sage: KL = K.zeta_function()                                                    
sage: QL = Q.zeta_function()                                                    
sage: KL(-1)                                                                    
0.000000000000000
sage: QL(-1)                                                                    
-0.0833333333333333

so the quotient will be zero. You can use taylor series as follows

sage: KL.taylor_series(-1,4)                                                    
0.000000000000000 - 0.0269221622682875*z - 0.0573141973539488*z^2 - 0.0443122899350116*z^3 + O(z^4)

We also have L functions for Dirichlet characters.

sage: D = DirichletGroup(4)                                                     
sage: chi = D.gen(0)                                                            
sage: chi.lfunction()                                                           
PARI L-function associated to Dirichlet character modulo 4 of conductor 4 mapping 3 |--> -1