| 1 | initial version |
WorksForMe (on 9.3.beta3) :
sage: MR=MatrixSpace(RR,3).random_element()
sage: MR
[-0.0413379232879041 -0.383726107921675 0.402484964228335]
[ 0.0264553329794861 0.345098500636929 0.264737280303141]
[ -0.141479831307881 -0.998284842827106 0.178457190865074]
sage: MR.det()
0.0117348614307324
sage: MR^-1
[ 27.7692689578674 -28.4039106845136 -20.4930893556867]
[ -3.59408846998909 4.22386369616762 1.83995041270540]
[ 1.91007962570815 1.10972616436864 -0.350583891628722]
sage: MR*MR^-1
[ 1.00000000000000 -4.99600361081320e-16 1.11022302462516e-16]
[-2.22044604925031e-16 1.00000000000000 -8.32667268468867e-17]
[-2.77555756156289e-16 -2.77555756156289e-17 1.00000000000000]
sage: MC=MR.change_ring(CC)
sage: MC
[-0.0413379232879041 -0.383726107921675 0.402484964228335]
[ 0.0264553329794861 0.345098500636929 0.264737280303141]
[ -0.141479831307881 -0.998284842827106 0.178457190865074]
sage: MC.det()
0.0117348614307324
sage: MC^-1
[ 27.7692689578674 -28.4039106845136 -20.4930893556867]
[ -3.59408846998909 4.22386369616762 1.83995041270540]
[ 1.91007962570815 1.10972616436864 -0.350583891628722]
sage: (MC^-1)-(MR^-1)
[0.000000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 0.000000000000000]
Of course, that's not a proof, just an example. If you have a counter-example, I'd be glad to see it...
IMHO, Florentin is right : any deviation has probably to be attributed to imprecisions in floating point approximate computations.
HTH,
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.