|   | 1 |  initial version  | 
It works for me, on 9.2.beta14 i get:
sage: def integral_R(f,a,b): 
....:     from sage.symbolic.integration.integral import definite_integral 
....:     return (definite_integral(f,x,a,b)).simplify_full() 
....: alpha = 1/sqrt(3) 
....: H = 2*arcsin(x/(sqrt(1-x^2)))  
....: integral_R(H,0,alpha).n()                                                                                                                                                                              
0.383300906518810
Which version of Sage are you using ?
|   | 2 |  No.2 Revision  | 
It works for me, on 9.2.beta14 i get:
sage: def integral_R(f,a,b): 
....:     from sage.symbolic.integration.integral import definite_integral 
....:     return (definite_integral(f,x,a,b)).simplify_full() 
....: alpha = 1/sqrt(3) 
....: H = 2*arcsin(x/(sqrt(1-x^2)))  
....: integral_R(H,0,alpha).n()                                                                                                                                                                              
0.383300906518810
Which version of Sage are you using ?
By the way, if you are interested in numerical integral, a more robust way is to use numerical_integral
sage: numerical_integral(H,0,alpha)                                                                                                                                                                          
(0.38330090651880994, 4.2554949177687755e-15)
 Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.
 
                
                Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.