1 | initial version |
It works for me, on 9.2.beta14 i get:
sage: def integral_R(f,a,b):
....: from sage.symbolic.integration.integral import definite_integral
....: return (definite_integral(f,x,a,b)).simplify_full()
....: alpha = 1/sqrt(3)
....: H = 2*arcsin(x/(sqrt(1-x^2)))
....: integral_R(H,0,alpha).n()
0.383300906518810
Which version of Sage are you using ?
2 | No.2 Revision |
It works for me, on 9.2.beta14 i get:
sage: def integral_R(f,a,b):
....: from sage.symbolic.integration.integral import definite_integral
....: return (definite_integral(f,x,a,b)).simplify_full()
....: alpha = 1/sqrt(3)
....: H = 2*arcsin(x/(sqrt(1-x^2)))
....: integral_R(H,0,alpha).n()
0.383300906518810
Which version of Sage are you using ?
By the way, if you are interested in numerical integral, a more robust way is to use numerical_integral
sage: numerical_integral(H,0,alpha)
(0.38330090651880994, 4.2554949177687755e-15)