| 1 | initial version |
You can set all variables to zero:
sage: var("x,y,z")
sage: expr = x*y+z^2+4
sage: expr.subs(dict(zip(expr.variables(),[0]*len(expr.variables()))))
4
If you are working with polynomials, consider using polynomial ring instead:
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: expr = x*y+z^2+4
sage: expr.constant_coefficient()
4
Also you can convert back and forth between symbolic expressions and polynomials:
sage: var("x,y,z")
sage: expr = x*y+z^2+4
sage: R = PolynomialRing(QQ, names='x,y,z')
sage: SR(R(expr).constant_coefficient())
4
| 2 | No.2 Revision |
You can set all variables to zero:
sage: var("x,y,z")
sage: expr = x*y+z^2+4
sage: expr.subs(dict(zip(expr.variables(),[0]*len(expr.variables()))))
expr.subs({v : 0 for v in expr.variables()})
4
If you are working with polynomials, consider using polynomial ring instead:
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: expr = x*y+z^2+4
sage: expr.constant_coefficient()
4
Also you can convert back and forth between symbolic expressions and polynomials:
sage: var("x,y,z")
sage: expr = x*y+z^2+4
sage: R = PolynomialRing(QQ, names='x,y,z')
sage: SR(R(expr).constant_coefficient())
4
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.