Since it's homework, some hints :
tan(a+b)=tan(a)+tan(b)1−tan(a)tan(b) is a rational expression in tan(a),tan(b).
This is true for b=(m−1)a, m∈N. By recurrence, tan(ma) is a rational expression in tan(a). For details, see wikipedia, the French version has formulas more easily transcriptible in Sage...).
in C, tan(arctan(x))=x (but the reverse is no true !).
But those rational expressions are fractions, which have a meaning in the usual fields, not in a "generic ring" where division may not even be defined.
FWIW, Sage
win't give you a closed-form for tan(mx) (gut you can program the expressions given by Wikipedia). However, for defined values of m and n, it willgive you the rational expression sought. Example:
sage: tan(5*arctan(x)+6*arctan(y))==tan(5*arctan(x)+6*arctan(y)).trig_expand().tr
....: ig_expand()
tan(5*arctan(x) + 6*arctan(y)) == -(2*(3*y^5 - 10*y^3 + 3*y)/(y^6 - 15*y^4 + 15*y^2 - 1) - (x^5 - 10*x^3 + 5*x)/(5*x^4 - 10*x^2 + 1))/(2*(x^5 - 10*x^3 + 5*x)*(3*y^5 - 10*y^3 + 3*y)/((y^6 - 15*y^4 + 15*y^2 - 1)*(5*x^4 - 10*x^2 + 1)) + 1)
tan(5arctan(x)+6arctan(y))=x5y6−15x5y4−30x4y5−10x3y6+15x5y2+100x4y3+150x3y4+60x2y5+5xy6−x5−30x4y−150x3y2−200x2y3−75xy4−6y5+10x3+60x2y+75xy2+20y3−5x−6y6x5y5+5x4y6−20x5y3−75x4y4−60x3y5−10x2y6+6x5y+75x4y2+200x3y3+150x2y4+30xy5+y6−5x4−60x3y−150x2y2−100xy3−15y4+10x2+30xy+15y2−1
Since it's homework, some hints :
tan(a+b)=tan(a)+tan(b)1−tan(a)tan(b) is a rational expression in tan(a),tan(b).
This is true for b=(m−1)a, m∈N. By recurrence, tan(ma) is a rational expression in tan(a). For details, see wikipedia, the French version has formulas more easily transcriptible in Sage...).
in C, tan(arctan(x))=x (but the reverse is no true !).
But those rational expressions are fractions, which have a meaning in the usual fields, not in a "generic ring" where division may not even be defined.
FWIW, Sage
win't won't give you a closed-form for tan(mx) (gut (but you can program the expressions given by Wikipedia). However, for defined values of m and n, it will give you the rational expression sought. Example:
sage: tan(5*arctan(x)+6*arctan(y))==tan(5*arctan(x)+6*arctan(y)).trig_expand().tr
....: ig_expand()
x, y = SR.var('x, y')
sage: a = tan(5*arctan(x) + 6*arctan(y))
sage: b = a.trig_expand().trig_expand()
sage: eq = a == b
sage: eq
tan(5*arctan(x) + 6*arctan(y)) == -(2*(3*y^5 - 10*y^3 + 3*y)/(y^6 - 15*y^4 + 15*y^2 - 1) - (x^5 - 10*x^3 + 5*x)/(5*x^4 - 10*x^2 + 1))/(2*(x^5 - 10*x^3 + 5*x)*(3*y^5 - 10*y^3 + 3*y)/((y^6 - 15*y^4 + 15*y^2 - 1)*(5*x^4 - 10*x^2 + 1)) + 1)
sage: eq.factor()
tan(5*arctan(x) + 6*arctan(y)) == (x^5*y^6 - 15*x^5*y^4 - 30*x^4*y^5 - 10*x^3*y^6 + 15*x^5*y^2 + 100*x^4*y^3 + 150*x^3*y^4 + 60*x^2*y^5 + 5*x*y^6 - x^5 - 30*x^4*y - 150*x^3*y^2 - 200*x^2*y^3 - 75*x*y^4 - 6*y^5 + 10*x^3 + 60*x^2*y + 75*x*y^2 + 20*y^3 - 5*x - 6*y)/(6*x^5*y^5 + 5*x^4*y^6 - 20*x^5*y^3 - 75*x^4*y^4 - 60*x^3*y^5 - 10*x^2*y^6 + 6*x^5*y + 75*x^4*y^2 + 200*x^3*y^3 + 150*x^2*y^4 + 30*x*y^5 + y^6 - 5*x^4 - 60*x^3*y - 150*x^2*y^2 - 100*x*y^3 - 15*y^4 + 10*x^2 + 30*x*y + 15*y^2 - 1)
$$\tan\left(5 Using
sage: latex(eq)
sage: latex(eqq)
we get
tan(5arctan(x)+6arctan(y))=−2(3y5−10y3+3y)y6−15y4+15y2−1−x5−10x3+5x5x4−10x2+12(x5−10x3+5x)(3y5−10y3+3y)(y6−15y4+15y2−1)(5x4−10x2+1)+1
and
$$
\tan\left(5 \, \arctan\left(x\right) + 6 \, \arctan\left(y\right)\right) = \frac{x^{5} y^{6} - 15 \, x^{5} y^{4} - 30 \, x^{4} y^{5} - 10 \, x^{3} y^{6} + 15 \, x^{5} y^{2} + 100 \, x^{4} y^{3} + 150 \, x^{3} y^{4} + 60 \, x^{2} y^{5} + 5 \, x y^{6} - x^{5} - 30 \, x^{4} y - 150 \, x^{3} y^{2} - 200 \, x^{2} y^{3} - 75 \, x y^{4} - 6 \, y^{5} + 10 \, x^{3} + 60 \, x^{2} y + 75 \, x y^{2} + 20 \, y^{3} - 5 \, x - 6 \, y}{6 \, x^{5} y^{5} + 5 \, x^{4} y^{6} - 20 \, x^{5} y^{3} - 75 \, x^{4} y^{4} - 60 \, x^{3} y^{5} - 10 \, x^{2} y^{6} + 6 \, x^{5} y + 75 \, x^{4} y^{2} + 200 \, x^{3} y^{3} + 150 \, x^{2} y^{4} + 30 \, x y^{5} + y^{6} - 5 \, x^{4} - 60 \, x^{3} y - 150 \, x^{2} y^{2} - 100 \, x y^{3} - 15 \, y^{4} + 10 \, x^{2} + 30 \, x y + 15 \, y^{2} - 1}$$
Since it's homework, some hints :
tan(a+b)=tan(a)+tan(b)1−tan(a)tan(b) is a rational expression in tan(a),tan(b).
This is true for b=(m−1)a, m∈N. By recurrence, tan(ma) is a rational expression in tan(a). For details, see wikipedia, the French version has formulas more easily transcriptible in Sage...).
in C, tan(arctan(x))=x (but the reverse is no true !).
But those rational expressions are fractions, which have a meaning in the usual fields, not in a "generic ring" where division may not even be defined.
FWIW, Sage
won't give you a closed-form for tan(mx) (but you can program the expressions given by Wikipedia). However, for defined values of m and n, it will give you the rational expression sought. Example:
sage: x, y = SR.var('x, y')
sage: a = tan(5*arctan(x) + 6*arctan(y))
sage: b = a.trig_expand().trig_expand()
sage: eq = a == b
sage: eq
tan(5*arctan(x) + 6*arctan(y)) == -(2*(3*y^5 - 10*y^3 + 3*y)/(y^6 - 15*y^4 + 15*y^2 - 1) - (x^5 - 10*x^3 + 5*x)/(5*x^4 - 10*x^2 + 1))/(2*(x^5 - 10*x^3 + 5*x)*(3*y^5 - 10*y^3 + 3*y)/((y^6 - 15*y^4 + 15*y^2 - 1)*(5*x^4 - 10*x^2 + 1)) + 1)
sage: eqq = eq.factor()
sage: eqq
tan(5*arctan(x) + 6*arctan(y)) == (x^5*y^6 - 15*x^5*y^4 - 30*x^4*y^5 - 10*x^3*y^6 + 15*x^5*y^2 + 100*x^4*y^3 + 150*x^3*y^4 + 60*x^2*y^5 + 5*x*y^6 - x^5 - 30*x^4*y - 150*x^3*y^2 - 200*x^2*y^3 - 75*x*y^4 - 6*y^5 + 10*x^3 + 60*x^2*y + 75*x*y^2 + 20*y^3 - 5*x - 6*y)/(6*x^5*y^5 + 5*x^4*y^6 - 20*x^5*y^3 - 75*x^4*y^4 - 60*x^3*y^5 - 10*x^2*y^6 + 6*x^5*y + 75*x^4*y^2 + 200*x^3*y^3 + 150*x^2*y^4 + 30*x*y^5 + y^6 - 5*x^4 - 60*x^3*y - 150*x^2*y^2 - 100*x*y^3 - 15*y^4 + 10*x^2 + 30*x*y + 15*y^2 - 1)
Using
sage: latex(eq)
sage: latex(eqq)
we get
tan(5arctan(x)+6arctan(y))=−2(3y5−10y3+3y)y6−15y4+15y2−1−x5−10x3+5x5x4−10x2+12(x5−10x3+5x)(3y5−10y3+3y)(y6−15y4+15y2−1)(5x4−10x2+1)+1
and
tan(5arctan(x)+6arctan(y))=x5y6−15x5y4−30x4y5−10x3y6+15x5y2+100x4y3+150x3y4+60x2y5+5xy6−x5−30x4y−150x3y2−200x2y3−75xy4−6y5+10x3+60x2y+75xy2+20y3−5x−6y6x5y5+5x4y6−20x5y3−75x4y4−60x3y5−10x2y6+6x5y+75x4y2+200x3y3+150x2y4+30xy5+y6−5x4−60x3y−150x2y2−100xy3−15y4+10x2+30xy+15y2−1
Since it's homework, some hints :
tan(a+b)=tan(a)+tan(b)1−tan(a)tan(b) is a rational expression in tan(a),tan(b).
This is true for b=(m−1)a, m∈N. By recurrence, tan(ma) is a rational expression in tan(a). For details, see wikipedia, the French version has formulas more easily transcriptible in Sage...).
in C, tan(arctan(x))=x (but the reverse is no true !).
But those rational expressions are fractions, which have a meaning in the usual fields, not in a "generic ring" where division may not even be defined.
FWIW, Sage
won't give you a closed-form for tan(mx) (but you can program the expressions given by Wikipedia). However, for defined values of m and n, it will give you the rational expression sought. Example:
sage: x, y = SR.var('x, y')
sage: a = tan(5*arctan(x) + 6*arctan(y))
sage: b = a.trig_expand().trig_expand()
sage: eq = a == b
sage: eq
tan(5*arctan(x) + 6*arctan(y)) == -(2*(3*y^5 - 10*y^3 + 3*y)/(y^6 - 15*y^4 + 15*y^2 - 1) - (x^5 - 10*x^3 + 5*x)/(5*x^4 - 10*x^2 + 1))/(2*(x^5 - 10*x^3 + 5*x)*(3*y^5 - 10*y^3 + 3*y)/((y^6 - 15*y^4 + 15*y^2 - 1)*(5*x^4 - 10*x^2 + 1)) + 1)
sage: eqq = eq.factor()
sage: eqq
tan(5*arctan(x) + 6*arctan(y)) == (x^5*y^6 - 15*x^5*y^4 - 30*x^4*y^5 - 10*x^3*y^6 + 15*x^5*y^2 + 100*x^4*y^3 + 150*x^3*y^4 + 60*x^2*y^5 + 5*x*y^6 - x^5 - 30*x^4*y - 150*x^3*y^2 - 200*x^2*y^3 - 75*x*y^4 - 6*y^5 + 10*x^3 + 60*x^2*y + 75*x*y^2 + 20*y^3 - 5*x - 6*y)/(6*x^5*y^5 + 5*x^4*y^6 - 20*x^5*y^3 - 75*x^4*y^4 - 60*x^3*y^5 - 10*x^2*y^6 + 6*x^5*y + 75*x^4*y^2 + 200*x^3*y^3 + 150*x^2*y^4 + 30*x*y^5 + y^6 - 5*x^4 - 60*x^3*y - 150*x^2*y^2 - 100*x*y^3 - 15*y^4 + 10*x^2 + 30*x*y + 15*y^2 - 1)
Using
From there, using
sage: latex(eq) sage: latex(eqq)latex(eq)
and latex(eqq)
or view(eq)
and view(eqq)
we get
tan(5arctan(x)+6arctan(y))=−2(3y5−10y3+3y)y6−15y4+15y2−1−x5−10x3+5x5x4−10x2+12(x5−10x3+5x)(3y5−10y3+3y)(y6−15y4+15y2−1)(5x4−10x2+1)+1
and
tan(5arctan(x)+6arctan(y))=x5y6−15x5y4−30x4y5−10x3y6+15x5y2+100x4y3+150x3y4+60x2y5+5xy6−x5−30x4y−150x3y2−200x2y3−75xy4−6y5+10x3+60x2y+75xy2+20y3−5x−6y6x5y5+5x4y6−20x5y3−75x4y4−60x3y5−10x2y6+6x5y+75x4y2+200x3y3+150x2y4+30xy5+y6−5x4−60x3y−150x2y2−100xy3−15y4+10x2+30xy+15y2−1