| 1 | initial version |
list method and the optional parameter sparseShort answer: use the list method.
Longer answer: use f.coefficients? to get the documentation.
This reveals an optional parameter sparse which
decides whether zero coefficients are included.
Having defined a polynomial:
sage: R.<x> = QQ[]
sage: f = x^4 - x^2 + 1
we get the list of coefficients:
sage: A = f.list()
sage: A
[1, 0, -1, 0, 1]
Then A[i] is the coefficient of x^i in f.
Note that we can also get the coefficient of x^i directly using f[i].
Try this to explore further.
sage: f.coefficients?
sage: f.coefficients()
sage: f.coefficients(sparse=True)
sage: f.coefficients(sparse=False)
| 2 | No.2 Revision |
list method and the optional parameter sparseShort answer: use the list method.
Longer answer: use f.coefficients? to get the documentation.
This reveals an optional parameter sparse which
decides whether zero coefficients are included.
Having defined a polynomial:
sage: R.<x> = QQ[]
sage: f = x^4 - x^2 + 1
we get the list of coefficients:
sage: A = f.list()
sage: A
[1, 0, -1, 0, 1]
Then A[i] is the coefficient of x^i in f.
Note that Important note: we can also get the coefficient of x^i in f directly using f[i].
f: sage: f[0]
1
sage: f[2]
-1
sage: f[9]
0
Try this to explore further.
sage: f.coefficients?
sage: f.coefficients()
sage: f.coefficients(sparse=True)
sage: f.coefficients(sparse=False)
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.