1 | initial version |
list
method and the optional parameter sparse
Short answer: use the list
method.
Longer answer: use f.coefficients?
to get the documentation.
This reveals an optional parameter sparse
which
decides whether zero coefficients are included.
Having defined a polynomial:
sage: R.<x> = QQ[]
sage: f = x^4 - x^2 + 1
we get the list of coefficients:
sage: A = f.list()
sage: A
[1, 0, -1, 0, 1]
Then A[i]
is the coefficient of x^i
in f
.
Note that we can also get the coefficient of x^i
directly using f[i]
.
Try this to explore further.
sage: f.coefficients?
sage: f.coefficients()
sage: f.coefficients(sparse=True)
sage: f.coefficients(sparse=False)
2 | No.2 Revision |
list
method and the optional parameter sparse
Short answer: use the list
method.
Longer answer: use f.coefficients?
to get the documentation.
This reveals an optional parameter sparse
which
decides whether zero coefficients are included.
Having defined a polynomial:
sage: R.<x> = QQ[]
sage: f = x^4 - x^2 + 1
we get the list of coefficients:
sage: A = f.list()
sage: A
[1, 0, -1, 0, 1]
Then A[i]
is the coefficient of x^i
in f
.
Note that Important note: we can also get the coefficient of x^i
in f
directly using f[i]
.
f
: sage: f[0]
1
sage: f[2]
-1
sage: f[9]
0
Try this to explore further.
sage: f.coefficients?
sage: f.coefficients()
sage: f.coefficients(sparse=True)
sage: f.coefficients(sparse=False)