1 | initial version |
As already pointed out by commenters, there are infinitely many such tuples. One way to generate them is:
def R31S1():
A=[random() for u in range(31)]
S=sum(A)
return tuple([u/S for u in A])
Let's check:
sage: T=R31S1()
sage: type(T)
<class 'tuple'>
sage: len(T)
31
sage: sum(T)
1.0
sage: all([u>=0 and u<1 for u in T])
True
sage: T
(0.006089037356475367,
0.02653861505103852,
0.048525911647988376,
0.030844994609170905,
0.02700793870208519,
0.07872299394844966,
0.015087636977883111,
0.06309180347147934,
0.05423637336235927,
0.052700158885111356,
0.06602701660767711,
0.0363743838933233,
0.013134222937337785,
0.04594966379579753,
0.025102035013684295,
0.04519431764115383,
0.002292718973017283,
0.012639236364503856,
0.030852444551295627,
0.07184775173604117,
0.04969543126517173,
0.03573006205560776,
0.01675001424706971,
0.0061099530976978155,
0.04987299807905701,
0.015149928406498115,
0.0027994609852037985,
0.013127271433974403,
0.0011150285848061565,
0.05054156008030657,
0.00684903623873419)
All of this is basic Python, nothing Sage-specific...
HTH,