1 | initial version |
Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462. Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).
With #28462, your code leads to
sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y - (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_uv = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y + (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_vu = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y + (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_vv = -4*(2*v*y^2 + 2*v*z^2 - (u^2 + v^2 + 1)*y - (u^2 + v^2 + 1)*z + 2*v)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
Side note: your declaration of phi_inv
is not correct: with your code, we have
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (u, v)
As you can see, the output is ill-formed, because (u, v)
should be a function of (x, y, z)
.
The correct declaration should be
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})
which leads to
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (y, z)
Forturnately, phi_inv
plays no role in the computation of the extrinsic curvature.
2 | No.2 Revision |
Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462. (this is a 1-line fix, as you can see here !). Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).
With #28462, your code leads to
sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y - (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_uv = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y + (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_vu = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y + (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_vv = -4*(2*v*y^2 + 2*v*z^2 - (u^2 + v^2 + 1)*y - (u^2 + v^2 + 1)*z + 2*v)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
Side note: your declaration of phi_inv
is not correct: with your code, we have
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (u, v)
As you can see, the output is ill-formed, because (u, v)
should be a function of (x, y, z)
.
The correct declaration should be
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})
which leads to
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (y, z)
Forturnately, phi_inv
plays no role in the computation of the extrinsic curvature.
3 | No.3 Revision |
Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462 (this is a 1-line fix, as you can see here !). Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).
With #28462, your code leads to
sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*(2*u*y^2 + 2*u*z^2 -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - (u^2 + v^2 + 1)*y v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_uv = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vv = 4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_uv = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y + (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_vu = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y + (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_vv = -4*(2*v*y^2 + 2*v*z^2 - (u^2 + v^2 + 1)*y - (u^2 + v^2 + 1)*z + 2*v)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
Side note: your declaration of phi_inv
is not correct: with your code, we have
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (u, v)
As you can see, the output is ill-formed, because (u, v)
should be a function of (x, y, z)
.
The correct declaration should be
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})
which leads to
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (y, z)
Forturnately, phi_inv
plays no role in the computation of the extrinsic curvature.
4 | No.4 Revision |
Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462 (this is a 1-line fix, as you can see here !). Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).
With #28462, your code leads to
sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_uv = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vv = 4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
Side note: your declaration of phi_inv
is not correct: with your code, we have
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (u, v)
As you can see, the output is ill-formed, because (u, v)
should be a function of (x, y, z)
.
The correct declaration should be
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})
which leads to
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (y, z)
Forturnately, phi_inv
plays no role in the computation of the extrinsic curvature.
5 | No.5 Revision |
Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462 (this is a 1-line fix, as you can see here !). . Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).
With #28462, your code leads to
sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_uv = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vv = 4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
Side note: your declaration of phi_inv
is not correct: with your code, we have
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (u, v)
As you can see, the output is ill-formed, because (u, v)
should be a function of (x, y, z)
.
The correct declaration should be
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})
which leads to
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (y, z)
Forturnately, phi_inv
plays no role in the computation of the extrinsic curvature.
6 | No.6 Revision |
Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462. Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).
With #28462, your code leads to
sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_uv = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vv = 4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
Side note: your declaration of phi_inv
is not correct: with your code, we have
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (u, v)
As you can see, the output is ill-formed, because (u, v)
should be a function of (x, y, z)
.
The correct declaration should be
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})
which leads to
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (y, z)
Forturnately, phi_inv
plays no role in the computation of the extrinsic curvature.
EDIT (14 Sep. 2019): the fix introduced in #28462 has been merged in Sage 8.9.rc0, so the next stable release of Sage will be free from this bug.