| 1 | initial version |
Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462. Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).
With #28462, your code leads to
sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y - (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_uv = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y + (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_vu = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y + (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_vv = -4*(2*v*y^2 + 2*v*z^2 - (u^2 + v^2 + 1)*y - (u^2 + v^2 + 1)*z + 2*v)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
Side note: your declaration of phi_inv is not correct: with your code, we have
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (u, v)
As you can see, the output is ill-formed, because (u, v) should be a function of (x, y, z).
The correct declaration should be
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})
which leads to
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (y, z)
Forturnately, phi_inv plays no role in the computation of the extrinsic curvature.
| 2 | No.2 Revision |
Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462. (this is a 1-line fix, as you can see here !). Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).
With #28462, your code leads to
sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y - (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_uv = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y + (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_vu = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y + (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_vv = -4*(2*v*y^2 + 2*v*z^2 - (u^2 + v^2 + 1)*y - (u^2 + v^2 + 1)*z + 2*v)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
Side note: your declaration of phi_inv is not correct: with your code, we have
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (u, v)
As you can see, the output is ill-formed, because (u, v) should be a function of (x, y, z).
The correct declaration should be
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})
which leads to
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (y, z)
Forturnately, phi_inv plays no role in the computation of the extrinsic curvature.
| 3 | No.3 Revision |
Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462 (this is a 1-line fix, as you can see here !). Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).
With #28462, your code leads to
sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*(2*u*y^2 + 2*u*z^2 -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - (u^2 + v^2 + 1)*y v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_uv = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vv = 4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_uv = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y + (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_vu = -4*(2*u*y^2 + 2*u*z^2 - (u^2 + v^2 + 1)*y + (u^2 + v^2 + 1)*z + 2*u)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
K_vv = -4*(2*v*y^2 + 2*v*z^2 - (u^2 + v^2 + 1)*y - (u^2 + v^2 + 1)*z + 2*v)/(sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*((sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*y^2 + (sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2))*z^2 + sqrt(2)*u^2 + sqrt(2)*v^2 + sqrt(2)))
v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
Side note: your declaration of phi_inv is not correct: with your code, we have
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (u, v)
As you can see, the output is ill-formed, because (u, v) should be a function of (x, y, z).
The correct declaration should be
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})
which leads to
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (y, z)
Forturnately, phi_inv plays no role in the computation of the extrinsic curvature.
| 4 | No.4 Revision |
Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462 (this is a 1-line fix, as you can see here !). Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).
With #28462, your code leads to
sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_uv = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vv = 4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
Side note: your declaration of phi_inv is not correct: with your code, we have
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (u, v)
As you can see, the output is ill-formed, because (u, v) should be a function of (x, y, z).
The correct declaration should be
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})
which leads to
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (y, z)
Forturnately, phi_inv plays no role in the computation of the extrinsic curvature.
| 5 | No.5 Revision |
Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462 (this is a 1-line fix, as you can see here !). . Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).
With #28462, your code leads to
sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_uv = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vv = 4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
Side note: your declaration of phi_inv is not correct: with your code, we have
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (u, v)
As you can see, the output is ill-formed, because (u, v) should be a function of (x, y, z).
The correct declaration should be
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})
which leads to
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (y, z)
Forturnately, phi_inv plays no role in the computation of the extrinsic curvature.
| 6 | No.6 Revision |
Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462. Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).
With #28462, your code leads to
sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_uv = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
K_vv = 4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))
Side note: your declaration of phi_inv is not correct: with your code, we have
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (u, v)
As you can see, the output is ill-formed, because (u, v) should be a function of (x, y, z).
The correct declaration should be
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})
which leads to
sage: phi_inv.display()
P --> Q
(x, y, z) |--> (u, v) = (y, z)
Forturnately, phi_inv plays no role in the computation of the extrinsic curvature.
EDIT (14 Sep. 2019): the fix introduced in #28462 has been merged in Sage 8.9.rc0, so the next stable release of Sage will be free from this bug.
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.