1 | initial version |
This is covered in the documentation on relative number fields, e.g.:
sage: K.<i> = QuadraticField(-1)
sage: R.<x> = PolynomialRing(K)
sage: L.<a> = K.extension(x^2 - 2)
sage: V,from_V,to_V = L.relative_vector_space()
sage: V.base_field() == K
True
sage: V.dimension()
2
sage: W,from_W,to_W = L.absolute_vector_space()
sage: W.base_field() == QQ
True
sage: W.dimension()
4
2 | No.2 Revision |
This is covered in the documentation on relative number fields, e.g.:.
Bottom up construction:
sage: K.<i> = QuadraticField(-1)
sage: R.<x> = PolynomialRing(K)
sage: L.<a> = K.extension(x^2 - 2)
sage: V,from_V,to_V = L.relative_vector_space()
sage: V.base_field() == K
True
sage: V.dimension()
2
sage: W,from_W,to_W = L.absolute_vector_space()
sage: W.base_field() == QQ
True
sage: W.dimension()
4
Top down construction:
sage: L.<i,a> = NumberField([x^2 + 1, x^2 - 2])
sage: L_over_K.<ii,aa> = L.relativize(i)
sage: K = L_over_K.base_field()
sage: V,from_V,to_V = L_over_K.relative_vector_space()
sage: V.base_field() == K
True
sage: V.dimension()
2
sage: W,from_W,to_W = L_over_K.absolute_vector_space()
sage: W.base_field() == QQ
True
sage: W.dimension()
4
3 | No.3 Revision |
This is covered in the documentation on relative number fields.
Bottom up construction:
sage: K.<i> = QuadraticField(-1)
sage: R.<x> = PolynomialRing(K)
sage: L.<a> L_over_K.<a> = K.extension(x^2 - 2)
sage: V,from_V,to_V = L.relative_vector_space()
L_over_K.relative_vector_space()
sage: V.base_field() == K
True
sage: V.dimension()
2
sage: W,from_W,to_W = L.absolute_vector_space()
L_over_K.absolute_vector_space()
sage: W.base_field() == QQ
True
sage: W.dimension()
4
Top down construction:
sage: L.<i,a> = NumberField([x^2 + 1, x^2 - 2])
sage: L_over_K.<ii,aa> = L.relativize(i)
sage: K = L_over_K.base_field()
sage: V,from_V,to_V = L_over_K.relative_vector_space()
sage: V.base_field() == K
True
sage: V.dimension()
2
sage: W,from_W,to_W = L_over_K.absolute_vector_space()
sage: W.base_field() == QQ
True
sage: W.dimension()
4