Loading [MathJax]/jax/output/HTML-CSS/jax.js
Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Sage can give us a symbolic solution in terms of Bessel functions:

sage: y=function("y")
sage: var("lambda_")
lambda_
sage: E=diff(y(x),x,2)-x*y(x)==lambda_*y(x)
sage: S=desolve(E,y(x),ivar=x, contrib_ode=True);S
[y(x) == 3/2*(2/3)^(2/3)*(2/3*I*(lambda_ + x)^(3/2))^(1/3)*_K2*sqrt(lambda_ + x)*bessel_I(1/3, 2/3*(lambda_ + x)^(3/2))/((lambda_ + x)^(3/2))^(1/3) + _K1*sqrt(lambda_ + x)*bessel_Y(1/3, 2/3*I*(lambda_ + x)^(3/2))]
sage: var("_K1, _K2")

wich is better seen/understood via \LaTeX:

y(x)=3(23)23(23i(λ+x)32)13K2λ+xI13(23(λ+x)32)2((λ+x)32)13+K1λ+xY13(23i(λ+x)32)

I am not qualified to check this solution.