1 | initial version |
One way would be to use the "symbolic n-th power of a matrix".
Define the matrix m
with coefficients in $\overline{mathbb{Q}}$,
the field of algebraic numbers:
sage: phi = matrix(QQbar, [[1/sqrt(2)],[i]])
sage: m = phi * phi.C.T
sage: m
[ 1/2 -0.7071067811865475?*I]
[ 0.7071067811865475?*I 1]
Define a symbolic variable in Sage's symbolic ring:
sage: n = SR.var('n')
Take the n
-th power of m
:
sage: mn = m^n
sage: mn
[ 1/3*3^n/2^n -1/3*I*sqrt(2)*3^n/2^n]
[ 1/3*I*sqrt(2)*3^n/2^n 2/3*3^n/2^n]
Substitute 1/2
to the exponent n
:
sage: msqrt = mn.subs({n: 1/2})
sage: msqrt
[1/6*sqrt(3)*sqrt(2) -1/3*I*sqrt(3)]
[ 1/3*I*sqrt(3) 1/3*sqrt(3)*sqrt(2)]
The result has coefficients in Sage's symbolic ring.
To convert it to another ring, use change_ring
:
sage: msqrt.change_ring(QQbar)
[ 0.4082482904638630? -0.5773502691896258?*I]
[ 0.5773502691896258?*I 0.8164965809277260?]
Check that squaring the square root gives back the original matrix:
sage: msqrt^2
[ 1/2 -1/2*I*sqrt(2)]
[ 1/2*I*sqrt(2) 1]
2 | No.2 Revision |
One way would be to use the "symbolic n-th power of a matrix".
Define the matrix m
with coefficients in $\overline{mathbb{Q}}$,
$\overline{mathbf{Q}}$,
the field of algebraic numbers:
sage: phi = matrix(QQbar, [[1/sqrt(2)],[i]])
sage: m = phi * phi.C.T
sage: m
[ 1/2 -0.7071067811865475?*I]
[ 0.7071067811865475?*I 1]
Define a symbolic variable in Sage's symbolic ring:
sage: n = SR.var('n')
Take the n
-th power of m
:
sage: mn = m^n
sage: mn
[ 1/3*3^n/2^n -1/3*I*sqrt(2)*3^n/2^n]
[ 1/3*I*sqrt(2)*3^n/2^n 2/3*3^n/2^n]
Substitute 1/2
to the exponent n
:
sage: msqrt = mn.subs({n: 1/2})
sage: msqrt
[1/6*sqrt(3)*sqrt(2) -1/3*I*sqrt(3)]
[ 1/3*I*sqrt(3) 1/3*sqrt(3)*sqrt(2)]
The result has coefficients in Sage's symbolic ring.
To convert it to another ring, use change_ring
:
sage: msqrt.change_ring(QQbar)
[ 0.4082482904638630? -0.5773502691896258?*I]
[ 0.5773502691896258?*I 0.8164965809277260?]
Check that squaring the square root gives back the original matrix:
sage: msqrt^2
[ 1/2 -1/2*I*sqrt(2)]
[ 1/2*I*sqrt(2) 1]
3 | No.3 Revision |
One way would be to use the "symbolic n-th power of a matrix".
Define the matrix m
with coefficients in $\overline{mathbf{Q}}$,
QQbar
,
the field of algebraic numbers:
sage: phi = matrix(QQbar, [[1/sqrt(2)],[i]])
sage: m = phi * phi.C.T
sage: m
[ 1/2 -0.7071067811865475?*I]
[ 0.7071067811865475?*I 1]
Define a symbolic variable in Sage's symbolic ring:
sage: n = SR.var('n')
Take the n
-th power of m
:
sage: mn = m^n
sage: mn
[ 1/3*3^n/2^n -1/3*I*sqrt(2)*3^n/2^n]
[ 1/3*I*sqrt(2)*3^n/2^n 2/3*3^n/2^n]
Substitute 1/2
to the exponent n
:
sage: msqrt = mn.subs({n: 1/2})
sage: msqrt
[1/6*sqrt(3)*sqrt(2) -1/3*I*sqrt(3)]
[ 1/3*I*sqrt(3) 1/3*sqrt(3)*sqrt(2)]
The result has coefficients in Sage's symbolic ring.
To convert it to another ring, use change_ring
:
sage: msqrt.change_ring(QQbar)
[ 0.4082482904638630? -0.5773502691896258?*I]
[ 0.5773502691896258?*I 0.8164965809277260?]
Check that squaring the square root gives back the original matrix:
sage: msqrt^2
[ 1/2 -1/2*I*sqrt(2)]
[ 1/2*I*sqrt(2) 1]