| 1 | initial version |
Question 1: v(f), where v is a tangent vector at a given point on a manifold and f a scalar field on that manifold should work as is. I've opened the ticket #27856 to fix this. Thanks for your report.
Question 2: for any Sage parent (here the tangent space Tp), the method an_element() returns an arbitrary element of it. The end user has no control on which element is returned. For tangent spaces on a manifold of dimension $n$, the element is hard-coded to be the vector of components $(1, 2, \ldots, n)$ in the default basis.
Another example is the method an_element of the manifold:
sage: M.an_element()
Point on the 3-dimensional differentiable manifold M
sage: M.an_element().coordinates()
(0, 0, 0)
Actually, the methods an_element are mostly used for test suites in Sage, like
sage: TestSuite(Tp).run(verbose=True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass
running ._test_zero() . . . pass
They probably should not be exposed in the tutorial. This is more confusing than useful, as you pointed out.
| 2 | No.2 Revision |
Question 1: v(f), where v is a tangent vector at a given point on a manifold and f a scalar field on that manifold manifold, should work as is. I've opened the ticket #27856 to fix this. Thanks for your report.
Question 2: for any Sage parent (here the tangent space Tp), the method an_element() returns an arbitrary element of it. The end user has no control on which element is returned. For tangent spaces on a manifold of dimension $n$, the element is hard-coded to be the vector of components $(1, 2, \ldots, n)$ in the default basis.
Another example is the method an_element of the manifold:
sage: M.an_element()
Point on the 3-dimensional differentiable manifold M
sage: M.an_element().coordinates()
(0, 0, 0)
Actually, the methods an_element are mostly used for test suites in Sage, like
sage: TestSuite(Tp).run(verbose=True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass
running ._test_zero() . . . pass
They probably should not be exposed in the tutorial. This is more confusing than useful, as you pointed out.
| 3 | No.3 Revision |
Question 1: v(f), where v is a tangent vector at a given point p on a manifold and f a scalar field on that manifold, should work as is. I've opened the ticket #27856 to fix this. Thanks for your report.report. A workaround is
v(f.differential().at(p))
Question 2: for any Sage parent (here the tangent space Tp), the method an_element() returns an arbitrary element of it. The end user has no control on which element is returned. For tangent spaces on a manifold of dimension $n$, the element is hard-coded to be the vector of components $(1, 2, \ldots, n)$ in the default basis.
Another example is the method an_element of the manifold:
sage: M.an_element()
Point on the 3-dimensional differentiable manifold M
sage: M.an_element().coordinates()
(0, 0, 0)
Actually, the methods an_element are mostly used for test suites in Sage, like
sage: TestSuite(Tp).run(verbose=True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass
running ._test_zero() . . . pass
They probably should not be exposed in the tutorial. This is more confusing than useful, as you pointed out.
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.