1 | initial version |
Like this:
E.<x,y,z> = EuclideanSpace()
A = E.point((4,3,2), name='A')
v = E.tangent_space(A)((1,2,1), name='v') # a vector at A
A.plot(size=20, color='red', opacity=0.5) + v.plot(color='green')
A = E.point((4,3,2), name='A')
can be shorten to A = E((4,3,2), name='A')
(this notation reflects SageMath's parent/element framework, points being elements of the Euclidean space E
)E.tangent_space(A)((1,2,1))
arises from differential geometry; it simply means the vector of components (1,2,1)
whose origin is A
.For more details and examples see https://sagemanifolds.obspm.fr/vector_calculus.html
2 | No.2 Revision |
Like this:
E.<x,y,z> E = EuclideanSpace()
EuclideanSpace(3)
A = E.point((4,3,2), name='A')
v = E.tangent_space(A)((1,2,1), name='v') # a vector at A
A.plot(size=20, color='red', opacity=0.5) + v.plot(color='green')
A = E.point((4,3,2), name='A')
can be shorten to A = E((4,3,2), name='A')
(this notation reflects SageMath's parent/element framework, points being elements of the Euclidean space E
)E.tangent_space(A)((1,2,1))
arises from differential geometry; it simply means the vector of components (1,2,1)
whose origin is A
.For more details and examples see https://sagemanifolds.obspm.fr/vector_calculus.html