| 1 | initial version |
Like this:
E.<x,y,z> = EuclideanSpace()
A = E.point((4,3,2), name='A')
v = E.tangent_space(A)((1,2,1), name='v') # a vector at A
A.plot(size=20, color='red', opacity=0.5) + v.plot(color='green')
A = E.point((4,3,2), name='A') can be shorten to A = E((4,3,2), name='A') (this notation reflects SageMath's parent/element framework, points being elements of the Euclidean space E)E.tangent_space(A)((1,2,1)) arises from differential geometry; it simply means the vector of components (1,2,1) whose origin is A.For more details and examples see https://sagemanifolds.obspm.fr/vector_calculus.html
| 2 | No.2 Revision |
Like this:
E.<x,y,z> E = EuclideanSpace()
EuclideanSpace(3)
A = E.point((4,3,2), name='A')
v = E.tangent_space(A)((1,2,1), name='v') # a vector at A
A.plot(size=20, color='red', opacity=0.5) + v.plot(color='green')
A = E.point((4,3,2), name='A') can be shorten to A = E((4,3,2), name='A') (this notation reflects SageMath's parent/element framework, points being elements of the Euclidean space E)E.tangent_space(A)((1,2,1)) arises from differential geometry; it simply means the vector of components (1,2,1) whose origin is A.For more details and examples see https://sagemanifolds.obspm.fr/vector_calculus.html
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.