1 | initial version |
Stockholm,
Could you try to create a minimal exemple exhibiting the behaviour you complain of ?
And again:
e = var('e', latex_name=r'\varepsilon')
At the (assumed) risk of monkeying the (British) Commons : No, no, no, no, no, no, no, no.
And no.
HTH,
2 | No.2 Revision |
Stockholm,
Could you try to create a minimal exemple exhibiting the behaviour you complain of ?
And again:
e = var('e', latex_name=r'\varepsilon')
At the (assumed) risk of monkeying the (British) Commons : No, no, no, no, no, no, no, no.
And no.
HTH,
EDIT : WorksForMe(TM) in sage 8.8.beta0 (with a very suspicious result : I'm afraid that you don't use manifolde as they are intended to be...):
sage: %time print((-grad(Phi)).display())
-grad(Phi) = 0
CPU times: user 994 µs, sys: 20 µs, total: 1.01 ms
Wall time: 1.02 ms
sage: Phi.display()
Phi: E^2 --> R
(x, z) |--> 1/4*Q*(1/(pi*(epsilon_0*epsilon_m*epsilon_s*(z - 2*z_c)*heaviside(z - z_s)*heaviside(-z + z_c + z_s)/(epsilon_m*(z - 2*z_c + z_s) - epsilon_s*z_s) + epsilon_0*epsilon_m*epsilon_s*(z - 4*z_c + 4*z_s)*heaviside(-z + z_s)/(epsilon_s*(z - 2*z_c + 2*z_s) - 2*epsilon_m*(z_c - z_s)) + epsilon_0*epsilon_m*heaviside(z - z_c - z_s))*sqrt((d_e - x)^2 + (z - 2*z_c)^2)) - 1/(pi*(epsilon_0*epsilon_m*epsilon_s*z*heaviside(z - z_s)*heaviside(-z + z_c + z_s)/(epsilon_m*(z - z_s) + epsilon_s*z_s) + epsilon_0*epsilon_m*epsilon_s*z*heaviside(z - z_c - z_s)/(epsilon_s*(z - 2*z_c + 2*z_s) + 2*epsilon_m*(z_c - z_s)) + epsilon_0*epsilon_m*heaviside(-z + z_s))*sqrt((d_e - x)^2 + z^2)) - 1/(pi*(epsilon_0*epsilon_m*epsilon_s*(z - 2*z_c)*heaviside(z - z_s)*heaviside(-z + z_c + z_s)/(epsilon_m*(z - 2*z_c + z_s) - epsilon_s*z_s) + epsilon_0*epsilon_m*epsilon_s*(z - 4*z_c + 4*z_s)*heaviside(-z + z_s)/(epsilon_s*(z - 2*z_c + 2*z_s) - 2*epsilon_m*(z_c - z_s)) + epsilon_0*epsilon_m*heaviside(z - z_c - z_s))*sqrt(x^2 + (z - 2*z_c)^2)) + 1/(pi*(epsilon_0*epsilon_m*epsilon_s*z*heaviside(z - z_s)*heaviside(-z + z_c + z_s)/(epsilon_m*(z - z_s) + epsilon_s*z_s) + epsilon_0*epsilon_m*epsilon_s*z*heaviside(z - z_c - z_s)/(epsilon_s*(z - 2*z_c + 2*z_s) + 2*epsilon_m*(z_c - z_s)) + epsilon_0*epsilon_m*heaviside(-z + z_s))*sqrt(x^2 + z^2)))
What is E ?