1 | initial version |
Try this :
def param_form(eqns, unkns, params=None):
## Variables involved in the system of equations
L1=reduce(union, [[s for s in E.variables()] for E in eqns], {})
## Solve in a dictionary (eliminates special-case handling of
## unique solutions or unique unknowns...)
Sol=solve(eqns, unkns, solution_dict=True)
## Variables involved in solutions
L2=set(s for s in reduce(union,
[set(Sol[0].get(k).variables())
for k in Sol[0].keys()], {}))
## "New" variables introduced by solve
D=L2.difference(L1)
if params is None:
## Default behaviour : declare them globally
var(", ".join([repr(s) for s in D]))
else:
## Peruse an option list of parameter names
## Create local symbolic variables
LD=SR.var(", ".join([repr(s) for s in D]))
## Again a single-variable special case. Grrrr...
if len(LD)==0:
LD=(LD,)
## Substitution dictionnary.
SD=dict(zip(LD, params))
## Too few parameter names ? Declare them globally.
## (We might alternatively raise an error)
RD=set(LD)-set(SD.keys())
if len(RD)>0:
var(", ".join([repr(s) for s in RD]))
## Substitute our params in the solution.
for S in Sol:
for k in S.keys():
S.update({k:S.get(k).subs(SD)})
return Sol
Test that (very quick and rough) :
sage: reset()
sage: load('/tmp/sage_shell_modepFOyEq/sage_shell_mode_temp.sage') # Load code above...
sage: x,y,z=var('x y z')
sage: eqns = [x + y + 2*z - 25 == 0, -x + y - 25 == 0]
sage: param_form(eqns, [x,y,z])
[{z: r16, y: -r16 + 25, x: -r16}]
Test that a symbolic variable r16
has been correctly created globally
sage: r16
r16
We wish to name our parameter name t
. We have to create it first:
sage: t=var("t")
sage: param_form(eqns, [x,y,z],[t])
[{z: t, y: -t + 25, x: -t}]
Seems to work as advertised...
HTH,