![]() | 1 | initial version |
sage: Qp=pAdicField(7)
sage: R.<x>=Qp[]
sage: K.<a>=Qp.extension(x^2-5)
sage: OK=K.integer_ring()
sage: OK
7-adic Unramified Extension Ring in a defined by x^2 - 5
Note that 15 is a square in Qp, so Qp(√15) is just Qp.
![]() | 2 | No.2 Revision |
sage: Qp=pAdicField(7) sage: R.<x>=Qp[] sage:
K.<a>=Qp.extension(x^2-5)K.=Qp.extension(x^2-5) sage: OK=K.integer_ring() sage: OK 7-adic Unramified Extension Ring in a defined by x^2 -5
Note that 15 is a square in Qp, Q7, so Qp(√15) Q7(√15) is just Qp.Q7.
![]() | 3 | No.3 Revision |
sage: Qp=pAdicField(7) sage: R.<x>=Qp[] sage: K.=Qp.extension(x^2-5) sage: OK=K.integer_ring() sage: OK 7-adic Unramified Extension Ring in a defined by x^2 - 5
Note that 15 is a square in Q7, so Q7(√15) is just Q7.
![]() | 4 | No.4 Revision |
sage: Qp=pAdicField(7) sage: R.<x>=Qp[] sage: K.=Qp.extension(x^2-5) sage: OK=K.integer_ring() sage: OK 7-adic Unramified Extension Ring in a defined by x^2 - 5
Note that 15 is a square in Q7, so Q7(√15) is just Q7.
![]() | 5 | No.5 Revision |
sage: Qp=pAdicField(7) sage: R.<x>=Qp[] sage: K.=Qp.extension(x^2-5) sage: OK=K.integer_ring() sage: OK 7-adic Unramified Extension Ring in a defined by x^2 - 5
Note that 15 is a square in Q7, so Q7(√15) is just Q7.
![]() | 6 | No.6 Revision |
. sage: Qp=pAdicField(7) sage: R.<x>=Qp[] sage: K.=Qp.extension(x^2-5) sage: OK=K.integer_ring() sage: OK 7-adic Unramified Extension Ring in a defined by x^2 - 5
Note that 15 is a square in Q7, so Q7(√15) is just Q7.
![]() | 7 | No.7 Revision |
.
sage: Qp=pAdicField(7)
sage: R.<x>=Qp[]
sage: K.=Qp.extension(x^2-5)
sage: OK=K.integer_ring()
sage: OK
7-adic Unramified Extension Ring in a defined by x^2 - 5
Note that 15 is a square in Q7, so Q7(√15) is just Q7.
![]() | 8 | No.8 Revision |
Try:
sage: Qp=pAdicField(7)
sage: R.<x>=Qp[]
sage: K.=Qp.extension(x^2-5)
K.<a>=Qp.extension(x^2-5)
sage: OK=K.integer_ring()
sage: OK
7-adic Unramified Extension Ring in a defined by x^2 - 55
Note that 15 is a square in Q7, so Q7(√15) is just Q7.
![]() | 9 | No.9 Revision |
Try:
sage: Qp=pAdicField(7)
sage: R.<x>=Qp[]
sage: K.<a>=Qp.extension(x^2-5)
sage: OK=K.integer_ring()
sage: OK
7-adic Unramified Extension Ring in a defined by x^2 - 5
Note that 15 is a square in Q7, so Q7(√15) Q7(√3.√5) is just Q7.Q7(√5).
![]() | 10 | No.10 Revision |
Try:
sage: Qp=pAdicField(7)
sage: R.<x>=Qp[]
sage: K.<a>=Qp.extension(x^2-5)
sage: OK=K.integer_ring()
sage: OK
7-adic Unramified Extension Ring in a defined by x^2 - 5
Note that 15 is a square in Q7, so Q7(√3.√5) Q7(√3,√5) is just Q7(√5).