Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Note that solve is usually used to solve algebraic equations. (The examples of the doc string of solve also contain some trigonometric equations, but mixing them with more variables... I also try it in some specific non-algebraic cases, but do not hope to be successful...)

To get the system solved i am using two variables $s=\sin\theta$, $c=\cos\theta$ instead of the one variable $\theta$. This moves the system into the algebraich world. The code

# i am using s, c for sin(theta), cos(theta)...
Fs, Na, Nb, s, c = var('Fs Na Nb s c')

eq1 = 0 ==  Fs + 0.16*Na           - 10.0*s
eq2 = 0 ==            Na           - 10.0*c
eq3 = 0 == -Fs           + 0.26*Nb -  6.0*s
eq4 = 0 ==                      Nb -  6.0*c
eq5 = 1 == s^2 + c^2

solns = solve( [eq1, eq2, eq3, eq4, eq5]
               , Fs, Na, Nb, s, c
               , solution_dict=True)

for sol in solns:
    for key in sol:
        print "%2s = %s" % ( key, sol[key].n(30) )
    print

then delivers

 c = 0.98104950
 s = 0.19375728
Nb = 5.8862970
Na = 9.8104950
Fs = 0.36789356

 c = -0.98104950
 s = -0.19375728
Nb = -5.8862970
Na = -9.8104950
Fs = -0.36789356

(Getting $\theta$ now should be one more code line.)