Ask Your Question

Revision history [back]

Let me write here the 3 most basic way to "properly time Sage computations". I think before looking at more intricate way to time code, one must first start with the basic ones or at least know they exists:

Timing one call to a function with %time :

sage: %time factor(2^300-1)
CPU times: user 5.42 ms, sys: 162 µs, total: 5.58 ms
Wall time: 7.31 ms
3^2 * 5^3 * 7 * 11 * 13 * 31 * 41 * 61 * 101 * 151 * 251 * 331 * 601 * 1201 * 1321 * 1801 * 4051 * 8101 * 63901 * 100801 * 268501 * 10567201 * 13334701 * 1182468601 * 1133836730401

Doing lots of call to a function and returns the best of 3 with %timeit:

sage: %timeit factor(2^300-1)
100 loops, best of 3: 5.72 ms per loop

Profiling python code with %prun:

sage: %prun factor(2^300-1)
         8 function calls in 0.007 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.007    0.007    0.007    0.007 {method 'factor' of 'sage.rings.integer.Integer' objects}
        1    0.000    0.000    0.007    0.007 <string>:1(<module>)
        1    0.000    0.000    0.007    0.007 misc.py:2139(factor)
        1    0.000    0.000    0.000    0.000 factorization_integer.py:30(__init__)
        2    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 proof.py:169(get_flag)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

Most of the time, I am able to reduce my timing problem to using one of these three.

Let me write here the 3 most basic way to "properly time Sage computations". I think before looking at more intricate way to time code, code (e.g. asking to modify the code itself), one must first start with the basic ones or at least know they exists:exists so that easy ways are used they are sufficient:

Timing one call to a function with %time :

sage: %time factor(2^300-1)
CPU times: user 5.42 ms, sys: 162 µs, total: 5.58 ms
Wall time: 7.31 ms
3^2 * 5^3 * 7 * 11 * 13 * 31 * 41 * 61 * 101 * 151 * 251 * 331 * 601 * 1201 * 1321 * 1801 * 4051 * 8101 * 63901 * 100801 * 268501 * 10567201 * 13334701 * 1182468601 * 1133836730401

Doing lots of call to a function and returns the best of 3 with %timeit:

sage: %timeit factor(2^300-1)
100 loops, best of 3: 5.72 ms per loop

Profiling python code with %prun:

sage: %prun factor(2^300-1)
         8 function calls in 0.007 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.007    0.007    0.007    0.007 {method 'factor' of 'sage.rings.integer.Integer' objects}
        1    0.000    0.000    0.007    0.007 <string>:1(<module>)
        1    0.000    0.000    0.007    0.007 misc.py:2139(factor)
        1    0.000    0.000    0.000    0.000 factorization_integer.py:30(__init__)
        2    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 proof.py:169(get_flag)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

Most of the time, I am able to reduce my timing problem to using one of these three.

Let me write here the 3 most basic way to "properly time Sage computations". I think before looking at more intricate way to time code (e.g. asking to modify the code itself), one must first start with the basic ones or at least know they exists so that easy ways are used they are sufficient:sufficient.

Timing one call to a function with %time :

sage: %time factor(2^300-1)
CPU times: user 5.42 ms, sys: 162 µs, total: 5.58 ms
Wall time: 7.31 ms
3^2 * 5^3 * 7 * 11 * 13 * 31 * 41 * 61 * 101 * 151 * 251 * 331 * 601 * 1201 * 1321 * 1801 * 4051 * 8101 * 63901 * 100801 * 268501 * 10567201 * 13334701 * 1182468601 * 1133836730401

Doing lots of call to a function and returns the best of 3 with %timeit:

sage: %timeit factor(2^300-1)
100 loops, best of 3: 5.72 ms per loop

Profiling python code with %prun:

sage: %prun factor(2^300-1)
         8 function calls in 0.007 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.007    0.007    0.007    0.007 {method 'factor' of 'sage.rings.integer.Integer' objects}
        1    0.000    0.000    0.007    0.007 <string>:1(<module>)
        1    0.000    0.000    0.007    0.007 misc.py:2139(factor)
        1    0.000    0.000    0.000    0.000 factorization_integer.py:30(__init__)
        2    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 proof.py:169(get_flag)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

Most of the time, I am able to reduce my timing problem to using one of these three.

Let me write here the 3 most basic way to "properly time Sage computations". I think before looking at more intricate way to time code (e.g. asking to modify the code itself), one must first start with the basic ones or at least know they exists so that easy ways methods are used when they are sufficient.

Timing one call to a function with %time :

sage: %time factor(2^300-1)
CPU times: user 5.42 ms, sys: 162 µs, total: 5.58 ms
Wall time: 7.31 ms
3^2 * 5^3 * 7 * 11 * 13 * 31 * 41 * 61 * 101 * 151 * 251 * 331 * 601 * 1201 * 1321 * 1801 * 4051 * 8101 * 63901 * 100801 * 268501 * 10567201 * 13334701 * 1182468601 * 1133836730401

Doing lots of call to a function and returns the best of 3 with %timeit:

sage: %timeit factor(2^300-1)
100 loops, best of 3: 5.72 ms per loop

Profiling python code with %prun:

sage: %prun factor(2^300-1)
         8 function calls in 0.007 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.007    0.007    0.007    0.007 {method 'factor' of 'sage.rings.integer.Integer' objects}
        1    0.000    0.000    0.007    0.007 <string>:1(<module>)
        1    0.000    0.000    0.007    0.007 misc.py:2139(factor)
        1    0.000    0.000    0.000    0.000 factorization_integer.py:30(__init__)
        2    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 proof.py:169(get_flag)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

Most of the time, I am able to reduce my timing problem to using one of these three.