|   | 1 |  initial version  | 
For a poset p we can simply ask for:
M3 = Posets.DiamondPoset(5)
N5 = Posets.PentagonPoset()
p.has_isomorphic_subposet(M3)
p.has_isomorphic_subposet(N5)
1.st example:
p = Poset( { 0  : [10,11],
             10 : [20,21],
             11 : [20,21],
             20 : [3],
             21 : [3],
             3  : [], })
p.show()
p.has_bottom()
p.has_top()
p.has_isomorphic_subposet(M3)
p.has_isomorphic_subposet(N5)
We obtain:
True
True
False
False
2.nd example:
q = Poset( { 0  : [10,11],
             10 : [20,21],
             11 : [20,21],
             20 : [4],
             21 : [3],
             3  : [4], 
             4  : [], })
q.show()
q.has_bottom()
q.has_top()
q.has_isomorphic_subposet(M3)
q.has_isomorphic_subposet(N5)
This time:
True
True
False
True
3.rd example:
r = Posets.DiamondPoset(6).star_product( Posets.ChainPoset(4) )
r.has_isomorphic_subposet(M3)
r.has_isomorphic_subposet(N5)
and of course we get
True
False
 Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.
 
                
                Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.