1 | initial version |
For a poset p
we can simply ask for:
M3 = Posets.DiamondPoset(5)
N5 = Posets.PentagonPoset()
p.has_isomorphic_subposet(M3)
p.has_isomorphic_subposet(N5)
1.st example:
p = Poset( { 0 : [10,11],
10 : [20,21],
11 : [20,21],
20 : [3],
21 : [3],
3 : [], })
p.show()
p.has_bottom()
p.has_top()
p.has_isomorphic_subposet(M3)
p.has_isomorphic_subposet(N5)
We obtain:
True
True
False
False
2.nd example:
q = Poset( { 0 : [10,11],
10 : [20,21],
11 : [20,21],
20 : [4],
21 : [3],
3 : [4],
4 : [], })
q.show()
q.has_bottom()
q.has_top()
q.has_isomorphic_subposet(M3)
q.has_isomorphic_subposet(N5)
This time:
True
True
False
True
3.rd example:
r = Posets.DiamondPoset(6).star_product( Posets.ChainPoset(4) )
r.has_isomorphic_subposet(M3)
r.has_isomorphic_subposet(N5)
and of course we get
True
False