1 | initial version |
There is no need to declare alpha
, beta
, gamma
as symbolic variables
before defining them as symbolic functions. So you could simplify the
declaration of variables and functions as follows.
sage: t = SR.var('t')
sage: alpha(t) = function('alpha')(t)
sage: beta(t) = function('beta')(t)
sage: gamma(t) = function('gamma')(t)
Then you define:
sage: mi(t) = sin(beta)^2*diff(alpha(t), t) + (cos(beta)*diff(alpha(t), t) +diff(gamma(t), t))*cos(beta)
sage: mi(t)
sin(beta(t))^2*diff(alpha(t), t) + (cos(beta(t))*diff(alpha(t), t) + diff(gamma(t), t))*cos(beta(t))
Then you expand and apply trig_simplify
:
sage: mi_e = mi(t).expand()
sage: mi_e_ts = mi_e.trig_simplify()
This is what you get:
sage: mi_e
cos(beta(t))^2*diff(alpha(t), t) + sin(beta(t))^2*diff(alpha(t), t) + cos(beta(t))*diff(gamma(t), t)
sage: mi_e_ts
cos(beta(t))*gamma(t)*psi(t) + diff(alpha(t), t)
The result involves psi
, so we investigate what it is. Sage allows you
to use blah?
to get the documentation of blah
. Use this as follows:
sage: psi?
Signature: psi(x, *args, **kwds)
Docstring:
The digamma function, psi(x), is the logarithmic derivative of the
gamma function.
psi(x) = frac{d}{dx} log(Gamma(x)) =
frac{Gamma'(x)}{Gamma(x)}
We represent the n-th derivative of the digamma function with
psi(n, x) or psi(n, x).
EXAMPLES:
sage: psi(x)
psi(x)
sage: psi(.5)
-1.96351002602142
sage: psi(3)
-euler_gamma + 3/2
sage: psi(1, 5)
1/6*pi^2 - 205/144
sage: psi(1, x)
psi(1, x)
sage: psi(1, x).derivative(x)
psi(2, x)
sage: psi(3, hold=True)
psi(3)
sage: psi(1, 5, hold=True)
psi(1, 5)
Init docstring: x.__init__(...) initializes x; see help(type(x)) for signature
File: /path/to/sage-8.1/local/lib/python2.7/site-packages/sage/functions/other.py
Type: function